
671

C H A P T E R 1 8

SQLXML

The key to everything is happiness. Do what you can to be happy
in this world. Life is short—too short to do otherwise. The deferred
gratification you mention so often is more deferred than gratifying.

—H. W. Kenton

NOTE: This chapter assumes that you’re running, at a minimum, SQL Server
2000 with SQLXML 3.0. The SQLXML Web releases have changed and en-
hanced SQL Server’s XML functionality significantly. For the sake of staying
current with the technology, I’m covering the latest version of SQLXML rather
than the version that shipped with the original release of SQL Server 2000.

This chapter updates the coverage of SQLXML in my last book, The Guru’s
Guide to SQL Server Stored Procedures, XML, and HTML. That book was
written before Web Release 1 (the update to SQL Server 2000’s original
SQLXML functionality) had shipped. As of this writing, SQLXML 3.0 (which
would be the equivalent of Web Release 3 had Microsoft not changed the
naming scheme) has shipped, and Yukon, the next version of SQL Server, is
about to go into beta test.

This chapter will also get more into how the SQLXML technologies are
designed and how they fit together from an architectural standpoint. As
with the rest of the book, my intent here is to get beyond the “how to” and
into the “why” behind how SQL Server’s technologies work.

I must confess that I was conflicted when I sat down to write this chap-
ter. I wrestled with whether to update the SQLXML coverage in my last
book, which was more focused on the practical application of SQLXML but
which I felt really needed updating, or to write something completely new
on just the architectural aspects of SQLXML, with little or no discussion of

Henderson_book.fm Page 671 Thursday, September 25, 2003 5:23 AM

672 Chapter 18 SQLXML

how to apply them in practice. Ultimately, I decided to do both things. In
keeping with the chief purpose of this book, I decided to cover the architec-
tural aspects of SQLXML, and, in order to stay up with the current state of
SQL Server’s XML family of technologies, I decided to update the coverage
of SQLXML in my last book from the standpoint of practical use. So, this
chapter updates what I had to say previously about SQLXML and also
delves into the SQLXML architecture in ways I’ve not done before.

Overview

With the popularity and ubiquity of XML, it’s no surprise that SQL Server
has extensive support for working with it. Like most modern DBMSs, SQL
Server regularly needs to work with and store data that may have originated
in XML. Without this built-in support, getting XML to and from SQL Server
would require the application developer to translate XML data before send-
ing it to SQL Server and again after receiving it back. Obviously, this could
quickly become very tedious given the pervasiveness of the language.

SQL Server is an XML-enabled DBMS. This means that it can read and
write XML data. It can return data from databases in XML format, and it can
read and update data stored in XML documents. As Table 18.1 illustrates,

Table 18.1 SQL Server’s XML Features

Feature Purpose

FOR XML An extension to the SELECT command that allows result sets to be
returned as XML

OPENXML Allows reading and writing of data in XML documents

XPath queries Allows SQL Server databases to be queried using XPath syntax

Schemas Supports XSD and XDR mapping schemas and XPath queries
against them

SOAP support Allows clients to access SQL Server’s functionality as a Web service

Updategrams XML templates through which data modifications can be applied to
a database

Managed
classes

Classes that expose the functionality of SQLXML inside the .NET
Framework

XML Bulk
Load

A high-speed facility for loading XML data into a SQL Server
database

Henderson_book.fm Page 672 Thursday, September 25, 2003 5:23 AM

MSXML 673

out of the box, SQL Server’s XML features can be broken down into eight
general categories.

We’ll explore each of these in this chapter and discuss how they work
and how they interoperate.

MSXML

SQL Server uses Microsoft’s XML parser, MSXML, to load XML data, so
we’ll begin our discussion there. There are two basic ways to parse XML data
using MSXML: using the Document Object Model (DOM) or using the Sim-
ple API for XML (SAX). Both DOM and SAX are W3C standards. The DOM
method involves parsing the XML document and loading it into a tree struc-
ture in memory. The entire document is materialized and stored in memory
when processed this way. An XML document parsed via DOM is known as a
DOM document (or just “DOM” for short). XML parsers provide a variety of
ways to manipulate DOM documents. Listing 18.1 shows a short Visual Basic
app that demonstrates parsing an XML document via DOM and querying it
for a particular node set. (You can find the source code to this app in the
CH18\msxmltest subfolder on the CD accompanying this book.)

Listing 18.1

Private Sub Command1_Click()

 Dim bstrDoc As String

 bstrDoc = "<Songs> " & _
 "<Song>One More Day</Song>" & _
 "<Song>Hard Habit to Break</Song>" & _
 "<Song>Forever</Song>" & _
 "<Song>Boys of Summer</Song>" & _
 "<Song>Cherish</Song>" & _
 "<Song>Dance</Song>" & _
 "<Song>I Will Always Love You</Song>" & _
 "</Songs>"

 Dim xmlDoc As New DOMDocument30

 If Len(Text1.Text) = 0 Then
 Text1.Text = bstrDoc
 End If

Henderson_book.fm Page 673 Thursday, September 25, 2003 5:23 AM

674 Chapter 18 SQLXML

 If Not xmlDoc.loadXML(Text1.Text) Then
 MsgBox "Error loading document"
 Else
 Dim oNodes As IXMLDOMNodeList
 Dim oNode As IXMLDOMNode

 If Len(Text2.Text) = 0 Then
 Text2.Text = "//Song"
 End If
 Set oNodes = xmlDoc.selectNodes(Text2.Text)

 For Each oNode In oNodes
 If Not (oNode Is Nothing) Then
 sName = oNode.nodeName
 sData = oNode.xml
 MsgBox "Node <" + sName + ">:" _
 + vbNewLine + vbTab + sData + vbNewLine
 End If
 Next

 Set xmlDoc = Nothing
 End If
End Sub

We begin by instantiating a DOMDocument object, then call its loadXML
method to parse the XML document and load it into the DOM tree. We call
its selectNodes method to query it via XPath. The selectNodes method re-
turns a node list object, which we then iterate through using For Each. In
this case, we display each node name followed by its contents via VB’s Msg-
Box function. We’re able to access and manipulate the document as though
it were an object because that’s exactly what it is—parsing an XML docu-
ment via DOM turns the document into a memory object that you can then
work with just as you would any other object.

SAX, by contrast, is an event-driven API. You process an XML docu-
ment via SAX by configuring your application to respond to SAX events.
As the SAX processor reads through an XML document, it raises events
each time it encounters something the calling application should know
about, such as an element starting or ending, an attribute starting or end-

Henderson_book.fm Page 674 Thursday, September 25, 2003 5:23 AM

MSXML 675

ing, and so on. It passes the relevant data about the event to the applica-
tion’s handler for the event. The application can then decide what to do in
response—it could store the event data in some type of tree structure, as
is the case with DOM processing; it could ignore the event; it could
search the event data for something in particular; or it could take some
other action. Once the event is handled, the SAX processor continues
reading the document. At no point does it persist the document in mem-
ory as DOM does. It’s really just a parsing mechanism to which an applica-
tion can attach its own functionality. In fact, SAX is the underlying parsing
mechanism for MSXML’s DOM processor. Microsoft’s DOM implementa-
tion sets up SAX event handlers that simply store the data handed to them
by the SAX engine in a DOM tree.

As you’ve probably surmised by now, SAX consumes far less memory
than DOM does. That said, it’s also much more trouble to set up and use.
By persisting documents in memory, the DOM API makes working with
XML documents as easy as working with any other kind of object.

SQL Server uses MSXML and the DOM to process documents you
load via sp_xml_preparedocument. It restricts the virtual memory MSXML
can use for DOM processing to one-eighth of the physical memory on the
machine or 500MB, whichever is less. In actual practice, it’s highly unlikely
that MSXML would be able to access 500MB of virtual memory, even on a
machine with 4GB of physical memory. The reason for this is that, by de-
fault, SQL Server reserves most of the user mode address space for use by
its buffer pool. You’ll recall that we talked about the MemToLeave space in
Chapter 11 and noted that the non–thread stack portion defaults to 256MB
on SQL Server 2000. This means that, by default, MSXML won’t be able to
use more than 256MB of memory—and probably considerably less given
that other things are also allocated from this region—regardless of the
amount of physical memory on the machine.

The reason MSXML is limited to no more than 500MB of virtual mem-
ory use regardless of the amount of memory on the machine is that SQL
Server calls the GlobalMemoryStatus Win32 API function to determine the
amount of available physical memory. GlobalMemoryStatus populates a
MEMORYSTATUS structure with information about the status of memory
use on the machine. On machines with more than 4GB of physical memory,
GlobalMemoryStatus can return incorrect information, so Windows returns
a -1 to indicate an overflow. The Win32 API function GlobalMemoryStatusEx
exists to address this shortcoming, but SQLXML does not call it. You can see
this for yourself by working through the following exercise.

Henderson_book.fm Page 675 Thursday, September 25, 2003 5:23 AM

676 Chapter 18 SQLXML

Exercise 18.1 Determining How MSXML Computes Its Memory
Ceiling

1. Restart your SQL Server, preferably from a console since we will be at-
taching to it with WinDbg. This should be a test or development sys-
tem, and, ideally, you should be its only user.

2. Start Query Analyzer and connect to your SQL Server.
3. Attach to SQL Server using WinDbg. (Press F6 and select sqlservr.exe

from the list of running tasks; if you have multiple instances, be sure to
select the right one.)

4. At the WinDbg command prompt, add the following breakpoint:

bp kernel32!GlobalMemoryStatus

5. Once the breakpoint is added, type g and hit Enter to allow SQL Server
to run.

6. Next, return to Query Analyzer and run the following query:

declare @doc varchar(8000)
set @doc='
<Songs>
 <Song name="She''s Like the Wind" artist="Patrick Swayze"/>
 <Song name="Hard to Say I''m Sorry" artist="Chicago"/>
 <Song name="She Loves Me" artist="Chicago"/>
 <Song name="I Can''t Make You Love Me" artist="Bonnie Raitt"/>
 <Song name="Heart of the Matter" artist="Don Henley"/>
 <Song name="Almost Like a Song" artist="Ronnie Milsap"/>
 <Song name="I''ll Be Over You" artist="Toto"/>
</Songs>
'
declare @hDoc int
exec sp_xml_preparedocument @hDoc OUT, @doc

7. The first time you parse an XML document using sp_xml_prepare-
document, SQLXML calls GlobalMemoryStatus to retrieve the amount
of physical memory in the machine, then calls an undocumented func-
tion exported by MSXML to restrict the amount of virtual memory it
may allocate. (I had you restart your server so that we’d be sure to go
down this code path.) This undocumented MSXML function is exported
by ordinal rather than by name from the MSXMLn.DLL and was added
to MSXML expressly for use by SQL Server.

8. At this point, Query Analyzer should appear to be hung because your
breakpoint has been hit in WinDbg and SQL Server has been stopped.
Switch back to WinDbg and type kv at the command prompt to dump
the call stack of the current thread. Your stack should look something
like this (I’ve omitted everything but the function names):

Henderson_book.fm Page 676 Thursday, September 25, 2003 5:23 AM

FOR XML 677

KERNEL32!GlobalMemoryStatus (FPO: [Non-Fpo])
sqlservr!CXMLLoadLibrary::DoLoad+0x1b5
sqlservr!CXMLDocsList::Load+0x58
sqlservr!CXMLDocsList::LoadXMLDocument+0x1b
sqlservr!SpXmlPrepareDocument+0x423
sqlservr!CSpecProc::ExecuteSpecial+0x334
sqlservr!CXProc::Execute+0xa3
sqlservr!CSQLSource::Execute+0x3c0
sqlservr!CStmtExec::XretLocalExec+0x14d
sqlservr!CStmtExec::XretExecute+0x31a
sqlservr!CMsqlExecContext::ExecuteStmts+0x3b9
sqlservr!CMsqlExecContext::Execute+0x1b6
sqlservr!CSQLSource::Execute+0x357
sqlservr!language_exec+0x3e1

9. You’ll recall from Chapter 3 that we discovered that the entry point
for T-SQL batch execution within SQL Server is language_exec. You
can see the call to language_exec at the bottom of this stack—this
was called when you submitted the T-SQL batch to the server to run.
Working upward from the bottom, we can see the call to SpXmlPre-
pareDocument, the internal “spec proc” (an extended procedure im-
plemented internally by the server rather than in an external DLL)
responsible for implementing the sp_xml_preparedocument xproc.
We can see from there that SpXmlPrepareDocument calls LoadXML-
Document, LoadXMLDocument calls a method named Load, Load
calls a method named DoLoad, and DoLoad calls GlobalMemorySta-
tus. So, that’s how we know how MSXML computes the amount of
physical memory in the machine, and, knowing the limitations of this
function, that’s how we know the maximum amount of vir tual mem-
ory MSXML can use.

10. Type q and hit Enter to quit WinDbg. You will have to restart your SQL
Server.

FOR XML

Despite MSXML’s power and ease of use, SQL Server doesn’t leverage
MSXML in all of its XML features. It doesn’t use it to implement server-
side FOR XML queries, for example, even though it’s trivial to construct a
DOM document programmatically and return it as text. MSXML has facili-
ties that make this quite easy. For example, Listing 18.2 presents a Visual
Basic app that executes a query via ADO and constructs a DOM document
on-the-fly based on the results it returns.

Henderson_book.fm Page 677 Thursday, September 25, 2003 5:23 AM

678 Chapter 18 SQLXML

Listing 18.2

Private Sub Command1_Click()

 Dim xmlDoc As New DOMDocument30
 Dim oRootNode As IXMLDOMNode

 Set oRootNode = xmlDoc.createElement("Root")

 Set xmlDoc.documentElement = oRootNode

 Dim oAttr As IXMLDOMAttribute
 Dim oNode As IXMLDOMNode

 Dim oConn As New ADODB.Connection
 Dim oComm As New ADODB.Command
 Dim oRs As New ADODB.Recordset

 oConn.Open (Text3.Text)
 oComm.ActiveConnection = oConn

 oComm.CommandText = Text1.Text
 Set oRs = oComm.Execute

 Dim oField As ADODB.Field

 While Not oRs.EOF
 Set oNode = xmlDoc.createElement("Row")
 For Each oField In oRs.Fields
 Set oAttr = xmlDoc.createAttribute(oField.Name)
 oAttr.Value = oField.Value
 oNode.Attributes.setNamedItem oAttr
 Next
 oRootNode.appendChild oNode
 oRs.MoveNext
 Wend

 oConn.Close

 Text2.Text = xmlDoc.xml

 Set xmlDoc = Nothing
 Set oRs = Nothing
 Set oComm = Nothing
 Set oConn = Nothing
End Sub

Henderson_book.fm Page 678 Thursday, September 25, 2003 5:23 AM

FOR XML 679

As you can see, translating a result set to XML doesn’t require much
code. The ADO Recordset object even supports being streamed directly to
an XML document (via its Save method), so if you don’t need complete con-
trol over the conversion process, you might be able to get away with even
less code than in my example.

As I’ve said, SQL Server doesn’t use MSXML or build a DOM docu-
ment in order to return a result set as XML. Why is that? And how do we
know that it doesn’t use MSXML to process server-side FOR XML queries?
I’ll answer both questions in just a moment.

The answer to the first question should be pretty obvious. Building a
DOM from a result set before returning it as text would require SQL Server
to persist the entire result set in memory. Given that the memory footprint
of the DOM version of an XML document is roughly three to five times as
large as the document itself, this doesn’t paint a pretty resource usage pic-
ture. If they had to first be persisted entirely in memory before being re-
turned to the client, even moderately large FOR XML result sets could use
huge amounts of virtual memory (or run into the MSXML memory ceiling
and therefore be too large to generate).

To answer the second question, let’s again have a look at SQL Server
under a debugger.

Exercise 18.2 Determining Whether Server-Side FOR XML
Uses MSXML

1. Restart your SQL Server, preferably from a console since we will be at-
taching to it with WinDbg. This should be a test or development sys-
tem, and, ideally, you should be its only user.

2. Start Query Analyzer and connect to your SQL Server.
3. Attach to SQL Server using WinDbg. (Press F6 and select sqlservr.exe

from the list of running tasks; if you have multiple instances, be sure to
select the right one.) Once the WinDbg command prompt appears, type
g and press Enter so that SQL Server can continue to run.

4. Back in Query Analyzer, run a FOR XML query of some type:

SELECT * FROM (
SELECT 'Summer Dream' as Song
UNION
SELECT 'Summer Snow'
UNION
SELECT 'Crazy For You'
) s FOR XML AUTO

This query unions some SELECT statements together, then queries
the union as a derived table using a FOR XML clause.

Henderson_book.fm Page 679 Thursday, September 25, 2003 5:23 AM

680 Chapter 18 SQLXML

5. After you run the query, switch back to WinDbg. You will likely see some
ModLoad messages in the WinDbg command window. WinDbg displays
a ModLoad message whenever a module is loaded into the process be-
ing debugged. If MSXMLn.DLL were being used to service your FOR
XML query, you’d see a ModLoad message for it. As you’ve noticed,
there isn’t one. MSXML isn’t used to service FOR XML queries.

6. If you’ve done much debugging, you may be speculating that perhaps
the MSXML DLL is already loaded; hence, we wouldn’t see a ModLoad
message for it when we ran our FOR XML query. That’s easy enough to
check. Hit Ctrl+Break in the debugger, then type lm in the command
window and hit Enter. The lm command lists the modules currently
loaded into the process space. Do you see MSXMLn.DLL in the list?
Unless you’ve been interacting with SQL Server’s other XML features
since you recycled your server, it should not be there. Type g in the
command window and press Enter so that SQL Server can continue
to run.

7. As a final test, let’s force MSXMLn.DLL to load by parsing an XML doc-
ument. Reload the query from Exercise 18.1 above in Query Analyzer
and run it. You should see a ModLoad message for MSXML’s DLL in
the WinDbg command window.

8. Hit Ctrl+Break again to stop WinDbg, then type q and hit Enter to stop
debugging. You will need to restart your SQL Server.

So, based on all this, we can conclude that SQL Server generates its own
XML when it processes a server-side FOR XML query. There is no memory-effi-
cient mechanism in MSXML to assist with this, so it is not used.

Using FOR XML

As you saw in Exercise 18.2, you can append FOR XML AUTO to the end
of a SELECT statement in order to cause the result to be returned as an
XML document fragment. Transact-SQL’s FOR XML syntax is much richer
than this, though—it supports several options that extend its usefulness in
numerous ways. In this section, we’ll discuss a few of these and work
through examples that illustrate them.

SELECT…FOR XML (Server-Side)

As I’m sure you’ve already surmised, you can retrieve XML data from SQL
Server by using the FOR XML option of the SELECT command. FOR
XML causes SELECT to return query results as an XML stream rather

Henderson_book.fm Page 680 Thursday, September 25, 2003 5:23 AM

Using FOR XML 681

than a traditional rowset. On the server-side, this stream can have one of
three formats: RAW, AUTO, or EXPLICIT. The basic FOR XML syntax
looks like this:

SELECT column list
FROM table list
WHERE filter criteria
FOR XML RAW | AUTO | EXPLICIT [, XMLDATA] [, ELEMENTS]
 [, BINARY BASE64]

RAW returns column values as attributes and wraps each row in a generic
row element. AUTO returns column values as attributes and wraps each row
in an element named after the table from which it came.1 EXPLICIT lets you
completely control the format of the XML returned by a query.

XMLDATA causes an XML-Data schema to be returned for the docu-
ment being retrieved. ELEMENTS causes the columns in XML AUTO
data to be returned as elements rather than attributes. BINARY BASE64
specifies that binary data is to be returned using BASE64 encoding.

I’ll discuss these options in more detail in just a moment. Also note that
there are client-side specific options available with FOR XML queries that
aren’t available in server-side queries. We’ll talk about those in just a mo-
ment, too.

RAW Mode

RAW mode is the simplest of the three basic FOR XML modes. It per-
forms a very basic translation of the result set into XML. Listing 18.3 shows
an example.

Listing 18.3

SELECT CustomerId, CompanyName
FROM Customers FOR XML RAW

(Results abridged)

XML_F52E2B61-18A1-11d1-B105-00805F49916B

1. There’s actually more to this than simply naming each row after the table, view, or UDF
that produced it. SQL Server uses a set of heuristics to decide what the actual element names
are with FOR XML AUTO.

Henderson_book.fm Page 681 Thursday, September 25, 2003 5:23 AM

682 Chapter 18 SQLXML

--
<row CustomerId="ALFKI" CompanyName="Alfreds Futterkiste"/><row Cu
CompanyName="Ana Trujillo Emparedados y helados"/><row CustomerId=
CompanyName="Antonio Moreno Taquería"/><row CustomerId="AROUT" Com
Horn"/><row CustomerId="BERGS" CompanyName="Berglunds snabbköp"/><
CustomerId="BLAUS" CompanyName="Blauer See Delikatessen"/><row Cus
CompanyName="Blondesddsl p_re et fils"/><row CustomerId="WELLI"
CompanyName="Wellington Importadora"/><row CustomerId="WHITC" Comp
Clover Markets"/><row CustomerId="WILMK" CompanyName="Wilman Kala"
CustomerId="WOLZA"
CompanyName="Wolski Zajazd"/>

Each column becomes an attribute in the result set, and each row be-
comes an element with the generic name of row.

As I’ve mentioned before, the XML that’s returned by FOR XML is not
well formed because it lacks a root element. It’s technically an XML frag-
ment and must include a root element in order to be usable by an XML
parser. From the client side, you can set an ADO Command object’s xml
root property in order to automatically generate a root node when you exe-
cute a FOR XML query.

AUTO Mode

FOR XML AUTO gives you more control than RAW mode over the XML
fragment that’s produced. To begin with, each row in the result set is named
after the table, view, or table-valued UDF that produced it. For example,
Listing 18.4 shows a basic FOR XML AUTO query.

Listing 18.4

SELECT CustomerId, CompanyName
FROM Customers FOR XML AUTO

(Results abridged)

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<Customers CustomerId="ALFKI" CompanyName="Alfreds Futterkiste"/><
CustomerId="ANATR" CompanyName="Ana Trujillo Emparedados y helados
CustomerId="ANTON" CompanyName="Antonio Moreno Taquería"/><Custome

Henderson_book.fm Page 682 Thursday, September 25, 2003 5:23 AM

Using FOR XML 683

CustomerId="AROUT" CompanyName="Around the Horn"/><Customers Custo
CompanyName="Vins et alcools Chevalier"/><Customers CustomerId="WA
CompanyName="Wartian Herkku"/><Customers CustomerId="WELLI" Compan
Importadora"/><Customers CustomerId="WHITC" CompanyName="White Clo
Markets"/><Customers CustomerId="WILMK" CompanyName="Wilman Kala"/
CustomerId="WOLZA"
CompanyName="Wolski Zajazd"/>

Notice that each row is named after the table from whence it came:
Customers. For results with more than one row, this amounts to having
more than one top-level (root) element in the fragment, which isn’t allowed
in XML.

One big difference between AUTO and RAW mode is the way in which
joins are handled. In RAW mode, a simple one-to-one translation occurs be-
tween columns in the result set and attributes in the XML fragment. Each
row becomes an element in the fragment named row. These elements are
technically empty themselves—they contain no values or subelements, only
attributes. Think of attributes as specifying characteristics of an element,
while data and subelements compose its contents. In AUTO mode, each
row is named after the source from which it came, and the rows from joined
tables are nested within one another. Listing 18.5 presents an example.

Listing 18.5

SELECT Customers.CustomerID, CompanyName, OrderId
FROM Customers JOIN Orders
ON (Customers.CustomerId=Orders.CustomerId)
FOR XML AUTO

(Results abridged and formatted)

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<Customers CustomerID="ALFKI" CompanyName="Alfreds Futterkiste">
 <Orders OrderId="10643"/><Orders OrderId="10692"/>
 <Orders OrderId="10702"/><Orders OrderId="10835"/>
 <Orders OrderId="10952"/><Orders OrderId="11011"/>
</Customers>
<Customers CustomerID="ANATR" CompanyName="Ana Trujillo Emparedado
 <Orders OrderId="10308"/><Orders OrderId="10625"/>
 <Orders OrderId="10759"/><Orders OrderId="10926"/></Customers>

Henderson_book.fm Page 683 Thursday, September 25, 2003 5:23 AM

684 Chapter 18 SQLXML

<Customers CustomerID="FRANR" CompanyName="France restauration">
 <Orders OrderId="10671"/><Orders OrderId="10860"/>
 <Orders OrderId="10971"/>
</Customers>

I’ve formatted the XML fragment to make it easier to read—if you run
the query yourself from Query Analyzer, you’ll see an unformatted stream
of XML text.

Note the way in which the Orders for each customer are contained
within each Customer element. As I said, AUTO mode nests the rows re-
turned by joins. Note my use of the full table name in the join criterion.
Why didn’t I use a table alias? Because AUTO mode uses the table aliases
you specify to name the elements it returns. If you use shortened monikers
for a table, its elements will have that name in the resulting XML fragment.
While useful in traditional Transact-SQL, this makes the fragment difficult
to read if the alias isn’t sufficiently descriptive.

ELEMENTS Option

The ELEMENTS option of the FOR XML AUTO clause causes AUTO
mode to return nested elements instead of attributes. Depending on your
business needs, element-centric mapping may be preferable to the default
attribute-centric mapping. Listing 18.6 gives an example of a FOR XML
query that returns elements instead of attributes.

Listing 18.6

SELECT CustomerID, CompanyName
FROM Customers
FOR XML AUTO, ELEMENTS

(Results abridged and formatted)

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<Customers>
 <CustomerID>ALFKI</CustomerID>
 <CompanyName>Alfreds Futterkiste</CompanyName>
</Customers>

Henderson_book.fm Page 684 Thursday, September 25, 2003 5:23 AM

Using FOR XML 685

<Customers>
 <CustomerID>ANATR</CustomerID>
 <CompanyName>Ana Trujillo Emparedados y helados</CompanyName>
</Customers>
<Customers>
 <CustomerID>ANTON</CustomerID>
 <CompanyName>Antonio Moreno Taquería</CompanyName>
</Customers>
<Customers>
 <CustomerID>AROUT</CustomerID>
 <CompanyName>Around the Horn</CompanyName>
</Customers>
<Customers>
 <CustomerID>WILMK</CustomerID>
 <CompanyName>Wilman Kala</CompanyName>
</Customers>
<Customers>
 <CustomerID>WOLZA</CustomerID>
 <CompanyName>Wolski Zajazd</CompanyName>
</Customers>

Notice that the ELEMENTS option has caused what were being re-
turned as attributes of the Customers element to instead be returned as
subelements. Each attribute is now a pair of element tags that enclose the
value from a column in the table.

NOTE: Currently, AUTO mode does not support GROUP BY or aggregate func-
tions. The heuristics it uses to determine element names are incompatible
with these constructs, so you cannot use them in AUTO mode queries. Addi-
tionally, FOR XML itself is incompatible with COMPUTE, so you can’t use it in
FOR XML queries of any kind.

EXPLICIT Mode

If you need more control over the XML than FOR XML produces, EX-
PLICIT mode is more flexible (and therefore more complicated to use) than
either RAW mode or AUTO mode. EXPLICIT mode queries define XML
documents in terms of a “universal table”—a mechanism for returning a re-
sult set from SQL Server that describes what you want the document to look
like, rather than composing the document itself. A universal table is just a

Henderson_book.fm Page 685 Thursday, September 25, 2003 5:23 AM

686 Chapter 18 SQLXML

SQL Server result set with special column headings that tell the server how
to produce an XML document from your data. Think of it as a set-oriented
method of making an API call and passing parameters to it. You use the facil-
ities available in Transact-SQL to make the call and pass it parameters.

A universal table consists of one column for each table column that you
want to return in the XML fragment, plus two additional columns: Tag and
Parent. Tag is a positive integer that uniquely identifies each tag that is to be
returned by the document; Parent establishes parent-child relationships be-
tween tags.

The other columns in a universal table—the ones that correspond to the
data you want to include in the XML fragment—have special names that ac-
tually consist of multiple segments delimited by exclamation points (!).
These special column names pass muster with SQL Server’s parser and pro-
vide specific instructions regarding the XML fragment to produce. They
have the following format:

Element!Tag!Attribute!Directive

We’ll see some examples of these shortly.
The first thing you need to do to build an EXPLICIT mode query is to

determine the layout of the XML document you want to end up with. Once
you know this, you can work backward from there to build a universal table
that will produce the desired format. For example, let’s say we want a sim-
ple customer list based on the Northwind Customers table that returns the
customer ID as an attribute and the company name as an element. The
XML fragment we’re after might look like this:

<Customers CustomerId="ALFKI">Alfreds Futterkiste</Customers>

Listing 18.7 shows a Transact-SQL query that returns a universal table that
specifies this layout.

Listing 18.7

SELECT 1 AS Tag,
NULL AS Parent,
CustomerId AS [Customers!1!CustomerId],
CompanyName AS [Customers!1]
FROM Customers

(Results abridged)

Henderson_book.fm Page 686 Thursday, September 25, 2003 5:23 AM

Using FOR XML 687

Tag Parent Customers!1!CustomerId Customers!1
------ -------- ---------------------- ---------------------------
1 NULL ALFKI Alfreds Futterkiste
1 NULL ANATR Ana Trujillo Emparedados y
1 NULL ANTON Antonio Moreno Taquería

The first two columns are the extra columns I mentioned earlier. Tag
specifies an identifier for the tag we want to produce. Since we want to pro-
duce only one element per row, we hard-code this to 1. The same is true of
Parent—there’s only one element and a top-level element doesn’t have a
parent, so we return NULL for Parent in every row.

Since we want to return the customer ID as an attribute, we specify an
attribute name in the heading of column 3 (bolded). And since we want to
return CompanyName as an element rather than an attribute, we omit the
attribute name in column 4.

By itself, this table accomplishes nothing. We have to add FOR XML
EXPLICIT to the end of it in order for the odd column names to have any
special meaning. Add FOR XML EXPLICIT to the query and run it from
Query Analyzer. Listing 18.8 shows what you should see.

Listing 18.8

SELECT 1 AS Tag,
NULL AS Parent,
CustomerId AS [Customers!1!CustomerId],
CompanyName AS [Customers!1]
FROM Customers
FOR XML EXPLICIT

(Results abridged and formatted)

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<Customers CustomerId="ALFKI">Alfreds Futterkiste</Customers>
<Customers CustomerId="ANATR">Ana Trujillo Emparedados y helados
 </Customers>
<Customers CustomerId="WHITC">White Clover Markets</Customers>
<Customers CustomerId="WILMK">Wilman Kala</Customers>
<Customers CustomerId="WOLZA">Wolski Zajazd</Customers>

Henderson_book.fm Page 687 Thursday, September 25, 2003 5:23 AM

688 Chapter 18 SQLXML

As you can see, each CustomerId value is returned as an attribute, and
each CompanyName is returned as the element data for the Customers ele-
ment, just as we specified.

Directives

The fourth part of the multivalued column headings supported by EX-
PLICIT mode queries is the directive segment. You use it to further control
how data is represented in the resulting XML fragment. As Table 18.2 illus-
trates, the directive segment supports eight values.

Of these, element is the most frequently used. It causes data to be ren-
dered as a subelement rather than an attribute. For example, let’s say that,
in addition to CustomerId and CompanyName, we wanted to return Con-
tactName in our XML fragment and we wanted it to be a subelement rather
than an attribute. Listing 18.9 shows how the query would look.

Listing 18.9

SELECT 1 AS Tag,
NULL AS Parent,
CustomerId AS [Customers!1!CustomerId],

Table 18.2 EXPLICIT Mode Directives

Value Function

element Causes data in the column to be encoded and repre-
sented as a subelement

xml Causes data to be represented as a subelement with-
out encoding it

xmltext Retrieves data from an overflow column and appends
it to the document

cdata Causes data in the column to be represented as a
CDATA section in the resulting document

hide Hides (omits) a column that appears in the universal
table from the resulting XML fragment

id, idref, and idrefs In conjunction with XMLDATA, can establish rela-
tionships between elements across multiple XML
fragments

Henderson_book.fm Page 688 Thursday, September 25, 2003 5:23 AM

Using FOR XML 689

CompanyName AS [Customers!1],
ContactName AS [Customers!1!ContactName!element]
FROM Customers
FOR XML EXPLICIT

(Results abridged and formatted)

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<Customers CustomerId="ALFKI">Alfreds Futterkiste
 <ContactName>Maria Anders</ContactName>
</Customers>
<Customers CustomerId="ANATR">Ana Trujillo Emparedados y
 <ContactName>Ana Trujillo</ContactName>
</Customers>
<Customers CustomerId="ANTON">Antonio Moreno Taquería
 <ContactName>Antonio Moreno</ContactName>
</Customers>
<Customers CustomerId="AROUT">Around the Horn
 <ContactName>Thomas Hardy</ContactName>
</Customers>
<Customers CustomerId="BERGS">Berglunds snabbköp
 <ContactName>Christina Berglund</ContactName>
</Customers>
<Customers CustomerId="WILMK">Wilman Kala
 <ContactName>Matti Karttunen</ContactName>
</Customers>
<Customers CustomerId="WOLZA">Wolski Zajazd
 <ContactName>Zbyszek Piestrzeniewicz</ContactName>
</Customers>

As you can see, ContactName is nested within each Customers element
as a subelement. The elements directive encodes the data it returns. We can
retrieve the same data by using the xml directive without encoding, as shown
in Listing 18.10.

Listing 18.10

SELECT 1 AS Tag,
NULL AS Parent,
CustomerId AS [Customers!1!CustomerId],
CompanyName AS [Customers!1],

Henderson_book.fm Page 689 Thursday, September 25, 2003 5:23 AM

690 Chapter 18 SQLXML

ContactName AS [Customers!1!ContactName!xml]
FROM Customers
FOR XML EXPLICIT

The xml directive (bolded) causes the column to be returned without
encoding any special characters it contains.

Establishing Data Relationships

Thus far, we’ve been listing the data from a single table, so our EXPLICT
queries haven’t been terribly complex. That would still be true even if we
queried multiple tables as long as we didn’t mind repeating the data from
each table in each top-level element in the XML fragment. Just as the col-
umn values from joined tables are often repeated in the result sets of Trans-
act-SQL queries, we could create an XML fragment that contained data
from multiple tables repeated in each element. However, that wouldn’t be
the most efficient way to represent the data in XML. Remember: XML sup-
ports hierarchical relationships between elements. You can establish these
hierarchies by using EXPLICIT mode queries and T-SQL UNIONs. List-
ing 18.11 provides an example.

Listing 18.11

SELECT 1 AS Tag,
NULL AS Parent,
CustomerId AS [Customers!1!CustomerId],
CompanyName AS [Customers!1],
NULL AS [Orders!2!OrderId],
NULL AS [Orders!2!OrderDate!element]
FROM Customers
UNION
SELECT 2 AS Tag,
1 AS Parent,
CustomerId,
NULL,
OrderId,
OrderDate
FROM Orders
ORDER BY [Customers!1!CustomerId], [Orders!2!OrderDate!element]
FOR XML EXPLICIT

Henderson_book.fm Page 690 Thursday, September 25, 2003 5:23 AM

Using FOR XML 691

This query does several interesting things. First, it links the Customers
and Orders tables using the CustomerId column they share. Notice the
third column in each SELECT statement—it returns the CustomerId col-
umn from each table. The Tag and Parent columns establish the details of
the relationship between the two tables. The Tag and Parent values in the
second query link it to the first. They establish that Order records are chil-
dren of Customer records. Lastly, note the ORDER BY clause. It arranges
the elements in the table in a sensible fashion—first by CustomerId and
second by the OrderDate of each Order. Listing 18.12 shows the result set.

Listing 18.12

(Results abridged and formatted)

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<Customers CustomerId="ALFKI">Alfreds Futterkiste
 <Orders OrderId="10643">
 <OrderDate>1997-08-25T00:00:00</OrderDate>
 </Orders>
 <Orders OrderId="10692">
 <OrderDate>1997-10-03T00:00:00</OrderDate>
 </Orders>
 <Orders OrderId="10702">
 <OrderDate>1997-10-13T00:00:00</OrderDate>
 </Orders>
 <Orders OrderId="10835">
 <OrderDate>1998-01-15T00:00:00</OrderDate>
 </Orders>
 <Orders OrderId="10952">
 <OrderDate>1998-03-16T00:00:00</OrderDate>
 </Orders>
 <Orders OrderId="11011">
 <OrderDate>1998-04-09T00:00:00</OrderDate>
 </Orders>
</Customers>
<Customers CustomerId="ANATR">Ana Trujillo Emparedados y helados
 <Orders OrderId="10308">
 <OrderDate>1996-09-18T00:00:00</OrderDate>
 </Orders>
 <Orders OrderId="10625">
 <OrderDate>1997-08-08T00:00:00</OrderDate>

Henderson_book.fm Page 691 Thursday, September 25, 2003 5:23 AM

692 Chapter 18 SQLXML

 </Orders>
 <Orders OrderId="10759">
 <OrderDate>1997-11-28T00:00:00</OrderDate>
 </Orders>
 <Orders OrderId="10926">
 <OrderDate>1998-03-04T00:00:00</OrderDate>
 </Orders>
</Customers>

As you can see, each customer’s orders are nested within its element.

The hide Directive

The hide directive omits a column you’ve included in the universal table
from the resulting XML document. One use of this functionality is to order
the result by a column that you don’t want to include in the XML fragment.
When you aren’t using UNION to merge tables, this isn’t a problem be-
cause you can order by any column you choose. However, the presence of
UNION in a query requires order by columns to exist in the result set. The
hide directive gives you a way to satisfy this requirement without being
forced to return data you don’t want to. Listing 18.13 shows an example.

Listing 18.13

SELECT 1 AS Tag,
NULL AS Parent,
CustomerId AS [Customers!1!CustomerId],
CompanyName AS [Customers!1],
PostalCode AS [Customers!1!PostalCode!hide],
NULL AS [Orders!2!OrderId],
NULL AS [Orders!2!OrderDate!element]
FROM Customers
UNION
SELECT 2 AS Tag,
1 AS Parent,
CustomerId,
NULL,
NULL,
OrderId,
OrderDate
FROM Orders

Henderson_book.fm Page 692 Thursday, September 25, 2003 5:23 AM

Using FOR XML 693

ORDER BY [Customers!1!CustomerId], [Orders!2!OrderDate!element],
[Customers!1!PostalCode!hide]
FOR XML EXPLICIT

Notice the hide directive (bolded) that’s included in the column 5 head-
ing. It allows the column to be specified in the ORDER BY clause without
actually appearing in the resulting XML fragment.

The cdata Directive

CDATA sections may appear anywhere in an XML document that character
data may appear. A CDATA section is used to escape characters that would
otherwise be recognized as markup (e.g., <, >, /, and so on). Thus CDATA
sections allow you to include sections in an XML document that might oth-
erwise confuse the parser. To render a CDATA section from an EXPLICIT
mode query, include the cdata directive, as demonstrated in Listing 18.14.

Listing 18.14

SELECT 1 AS Tag,
NULL AS Parent,
CustomerId AS [Customers!1!CustomerId],
CompanyName AS [Customers!1],
Fax AS [Customers!1!!cdata]
FROM Customers
FOR XML EXPLICIT

(Results abridged and formatted)

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<Customers CustomerId="ALFKI">Alfreds Futterkiste
 <![CDATA[030-0076545]]>
</Customers>
<Customers CustomerId="ANATR">Ana Trujillo Emparedados y helados
 <![CDATA[(5) 555-3745]]>
</Customers>
<Customers CustomerId="ANTON">Antonio Moreno Taquería
</Customers>
<Customers CustomerId="AROUT">Around the Horn
 <![CDATA[(171) 555-6750]]>

Henderson_book.fm Page 693 Thursday, September 25, 2003 5:23 AM

694 Chapter 18 SQLXML

</Customers>
<Customers CustomerId="BERGS">Berglunds snabbköp
 <![CDATA[0921-12 34 67]]>
</Customers>

As you can see, each value in the Fax column is returned as a CDATA
section in the XML fragment. Note the omission of the attribute name in
the cdata column heading (bolded). This is because attribute names aren’t
allowed for CDATA sections. Again, they represent escaped document seg-
ments, so the XML parser doesn’t process any attribute or element names
they may contain.

The id, idref, and idrefs Directives

The ID, IDREF, and IDFREFS data types can be used to represent rela-
tional data in an XML document. Set up in a DTD or XML-Data schema,
they establish relationships between elements. They’re handy in situations
where you need to exchange complex data and want to minimize the
amount of data duplication in the document.

EXPLICIT mode queries can use the id, idref, and idrefs directives to
specify relational fields in an XML document. Naturally, this approach
works only if a schema is used to define the document and identify the col-
umns used to establish links between entities. FOR XML’s XMLDATA op-
tion provides a means of generating an inline schema for its XML fragment.
In conjunction with the id directives, it can identify relational fields in the
XML fragment. Listing 18.15 gives an example.

Listing 18.15

SELECT 1 AS Tag,
 NULL AS Parent,
 CustomerId AS [Customers!1!CustomerId!id],
 CompanyName AS [Customers!1!CompanyName],
 NULL AS [Orders!2!OrderID],
 NULL AS [Orders!2!CustomerId!idref]
FROM Customers
UNION
SELECT 2,
 NULL,
 NULL,
 NULL,

Henderson_book.fm Page 694 Thursday, September 25, 2003 5:23 AM

Using FOR XML 695

 OrderID,
 CustomerId
FROM Orders
ORDER BY [Orders!2!OrderID]
FOR XML EXPLICIT, XMLDATA

(Results abridged and formatted)

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<Schema name="Schema2" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
 <ElementType name="Customers" content="mixed" model="open">
 <AttributeType name="CustomerId" dt:type="id"/>
 <AttributeType name="CompanyName" dt:type="string"/>
 <attribute type="CustomerId"/>
 <attribute type="CompanyName"/>
 </ElementType>
 <ElementType name="Orders" content="mixed" model="open">
 <AttributeType name="OrderID" dt:type="i4"/>
 <AttributeType name="CustomerId" dt:type="idref"/>
 <attribute type="OrderID"/>
 <attribute type="CustomerId"/>
 </ElementType>
</Schema>
<Customers xmlns="x-schema:#Schema2" CustomerId="ALFKI"
 CompanyName="Alfreds Futterkiste"/>
<Customers xmlns="x-schema:#Schema2" CustomerId="ANATR"
 CompanyName="Ana Trujillo Emparedados y helados"/>
<Customers xmlns="x-schema:#Schema2" CustomerId="ANTON"
 CompanyName="Antonio Moreno Taquería"/>
<Customers xmlns="x-schema:#Schema2" CustomerId="AROUT"
 CompanyName="Around the Horn"/>
<Orders xmlns="x-schema:#Schema2" OrderID="10248"
 CustomerId="VINET"/>
<Orders xmlns="x-schema:#Schema2" OrderID="10249"
 CustomerId="TOMSP"/>
<Orders xmlns="x-schema:#Schema2" OrderID="10250"
 CustomerId="HANAR"/>
<Orders xmlns="x-schema:#Schema2" OrderID="10251"
 CustomerId="VICTE"/>
<Orders xmlns="x-schema:#Schema2" OrderID="10252"
 CustomerId="SUPRD"/>
<Orders xmlns="x-schema:#Schema2" OrderID="10253"
 CustomerId="HANAR"/>

Henderson_book.fm Page 695 Thursday, September 25, 2003 5:23 AM

696 Chapter 18 SQLXML

<Orders xmlns="x-schema:#Schema2" OrderID="10254"
 CustomerId="CHOPS"/>
<Orders xmlns="x-schema:#Schema2" OrderID="10255"
 CustomerId="RICSU"/>

Note the use of the id and idref directives in the CustomerId columns
of the Customers and Orders tables (bolded). These directives link the two
tables by using the CustomerId column they share.

If you examine the XML fragment returned by the query, you’ll see that
it starts off with the XML-Data schema that the XMLDATA directive cre-
ated. This schema is then referenced in the XML fragment that follows.

SELECT…FOR XML (Client-Side)

SQLXML also supports the notion of offloading to the client the work of trans-
lating a result set into XML. This functionality is accessible via the SQLXML
managed classes, XML templates, a virtual directory configuration switch, and
the SQLXMLOLEDB provider. Because it requires the least amount of setup,
I’ll cover client-side FOR XML using SQLXMLOLEDB here. The underly-
ing technology is the same regardless of the mechanism used.

SQLXMLOLEDB serves as a layer between a client (or middle-tier)
app and SQL Server’s native SQLOLEDB provider. The Data Source prop-
erty of the SQLXMLOLEDB provider specifies the OLE DB provider
through which it executes queries; currently only SQLOLEDB is allowed.

SQLXMLOLEDB is not a rowset provider. In order to use it from
ADO, you must access it via ADO’s stream mode. I’ll show you some code
in just a minute that illustrates this.

You perform client-side FOR XML processing using SQLXMLOLEDB
by following these general steps.

1. Connect using an ADO connection string that specifies
SQLXMLOLEDB as the provider.

2. Set the ClientSideXML property of your ADO Command object to
True.

3. Create and open an ADO stream object and associate it with your
Command object’s Output Stream property.

4. Execute a FOR XML EXPLICIT, FOR XML RAW, or FOR XML
NESTED Transact-SQL query via your Command object, specifying
the adExecuteStream option in your call to Execute.

Henderson_book.fm Page 696 Thursday, September 25, 2003 5:23 AM

Using FOR XML 697

Listing 18.16 illustrates. (You can find the source code for this app in
the CH18\forxml_clientside subfolder on this book’s CD.)

Listing 18.16

Private Sub Command1_Click()
 Dim oConn As New ADODB.Connection
 Dim oComm As New ADODB.Command

 Dim stOutput As New ADODB.Stream
 stOutput.Open

 oConn.Open (Text3.Text)
 oComm.ActiveConnection = oConn
 oComm.Properties("ClientSideXML") = "True"
 If Len(Text1.Text) = 0 Then
 Text1.Text = _
 "select * from pubs..authors FOR XML NESTED"
 End If
 oComm.CommandText = Text1.Text
 oComm.Properties("Output Stream") = stOutput
 oComm.Properties("xml root") = "Root"
 oComm.Execute , , adExecuteStream

 Text2.Text = stOutput.ReadText(adReadAll)

 stOutput.Close
 oConn.Close

 Set oComm = Nothing
 Set oConn = Nothing
End Sub

As you can see, most of the action here revolves around the ADO Com-
mand object. We set its ClientSideXML property to True and its Output
Stream property to an ADO stream object we created before callings its Ex-
ecute method.

Note the use of the FOR XML NESTED clause. The NESTED option
is specific to client-side FOR XML processing—you can’t use it in server-
side queries. It’s very much like FOR XML AUTO but has some minor dif-
ferences. For example, when a FOR XML NESTED query references a

Henderson_book.fm Page 697 Thursday, September 25, 2003 5:23 AM

698 Chapter 18 SQLXML

view, the names of the view’s underlying base tables are used in the gener-
ated XML. The same is true for table aliases—their base names are used in
the XML that’s produced. Using FOR XML AUTO in a client-side FOR
XML query causes the query to be processed on the server rather than the
client, so use NESTED when you want similar functionality to FOR XML
AUTO on the client.

Given our previous investigation into whether MSXML is involved in
the production of server-side XML (Exercise 18.2), you might be wonder-
ing whether it’s used by SQLXML’s client-side FOR XML processing. It
isn’t. Again, you can attach a debugger (in this case, to the forxml_clientside
app) to see this for yourself. You will see SQLXMLn.DLL loaded into the
app’s process space the first time you run the query. This DLL is where the
SQLXMLOLEDB provider resides and is where SQLXML’s client-side
FOR XML processing occurs.

OPENXML

OPENXML is a built-in Transact-SQL function that can return an XML
document as a rowset. In conjunction with sp_xml_preparedocument and
sp_xml_removedocument, OPENXML allows you to break down (or shred)
nonrelational XML documents into relational pieces that can be inserted
into tables.

I suppose we should begin the investigation of how OPENXML works
by determining where it’s implemented. Does it reside in a separate DLL
(SQLXMLn.DLL, perhaps?) or is it implemented completely within the
SQL Server executable?

The most expedient way to determine this is to run SQL Server under a
debugger, stop it in the middle of an OPENXML call, and inspect the call
stack. That would tell us in what module it was implemented. Since we don’t
know the name of the classes or functions that implement OPENXML, we
can’t easily set a breakpoint to accomplish this. Instead, we will have to just be
quick and/or lucky enough to stop the debugger in the right place if we want
to use this approach to find out the module in which OPENXML is imple-
mented. This is really easier said than done. Even with complicated docu-
ments, OPENXML returns fairly quickly, so breaking in with a debugger
while it’s in progress could prove pretty elusive.

Another way to accomplish the same thing would be to force OPENXML
to error and have a breakpoint set up in advance to stop in SQL Server’s stan-
dard error reporting routine. From years of working with the product and

Henderson_book.fm Page 698 Thursday, September 25, 2003 5:23 AM

OPENXML 699

seeing my share of access violations and stack dumps, I know that ex_raise is a
central error-reporting routine for the server. Not all errors go through
ex_raise, but many of them do, so it’s worth setting a breakpoint in ex_raise
and forcing OPENXML to error to see whether we can get a call stack and as-
certain where OPENXML is implemented. Exercise 18.3 will take you
through the process of doing exactly that.

Exercise 18.3 Determining Where OPENXML Is Implemented

1. Restart your SQL Server, preferably from a console since we will be at-
taching to it with WinDbg. This should be a test or development sys-
tem, and, ideally, you should be its only user.

2. Start Query Analyzer and connect to your SQL Server.
3. Attach to SQL Server using WinDbg. (Press F6 and select sqlservr.exe

from the list of running tasks; if you have multiple instances, be sure to
select the right one.)

4. Once the WinDbg command prompt appears, set a breakpoint in
ex_raise:

bp sqlservr!ex_raise

5. Type g and press Enter so that SQL Server can continue to run.
6. Back in Query Analyzer, run this query:

declare @hDoc int
set @hdoc=8675309 -- force a bogus handle
select * from openxml(@hdoc,'/',1)

7. Query Analyzer should appear to hang because the breakpoint you set
in WinDbg has been hit. Switch back to WinDbg and type kv at the com-
mand prompt and press Enter. This will dump the call stack. Your stack
should look something like this (I’ve removed everything but the func-
tion names):

sqlservr!ex_raise
sqlservr!CXMLDocsList::XMLMapFromHandle+0x3f
sqlservr!COpenXMLRange::GetRowset+0x14d
sqlservr!CQScanRmtScan::OpenConnection+0x141
sqlservr!CQScanRmtBase::Open+0x18
sqlservr!CQueryScan::Startup+0x10d
sqlservr!CStmtQuery::ErsqExecuteQuery+0x26b
sqlservr!CStmtSelect::XretExecute+0x229
sqlservr!CMsqlExecContext::ExecuteStmts+0x3b9
sqlservr!CMsqlExecContext::Execute+0x1b6
sqlservr!CSQLSource::Execute+0x357
sqlservr!language_exec+0x3e1

Henderson_book.fm Page 699 Thursday, September 25, 2003 5:23 AM

700 Chapter 18 SQLXML

sqlservr!process_commands+0x10e
UMS!ProcessWorkRequests+0x272
UMS!ThreadStartRoutine+0x98 (FPO: [EBP 0x00bd6878] [1,0,4])
MSVCRT!_beginthread+0xce
KERNEL32!BaseThreadStart+0x52 (FPO: [Non-Fpo])

8. This call stack tells us a couple of things. First, it tells us that
OPENXML is implemented directly by the server itself. It resides in
sqlservr.exe, SQL Server’s executable. Second, it tells us that a class
named COpenXMLRange is responsible for producing the rowset that
the T-SQL OPENXML function returns.

9. Type q and hit Enter to stop debugging. You will need to restart your
SQL Server.

By reviewing this call stack, we can deduce how OPENXML works. It comes
into the server via a language or RPC event (our code obviously came into the
server as a language event—note the language_exec entry in the call stack)
and eventually results in a call to the GetRowset method of the COpenXML-
Range class. We can assume that GetRowset accesses the DOM document
previously created via the call to sp_xml_preparedocument and turns it into a
two-dimensional matrix that can be returned as a rowset, thus finishing up the
work of the OPENXML function.

Now that we know the name of the class and method behind OPENXML,
we could set a new breakpoint in COpenXMLRange::GetRowset, pass a valid
document handle into OPENXML, and step through the disassembly for the
method when the breakpoint is hit. However, we’ve got a pretty good idea of
how OPENXML works; there’s little to be learned about OPENXML’s architec-
ture from stepping through the disassembly at this point.

Using OPENXML

Books Online documents how to use OPENXML pretty well, so I’ll try not
to repeat that information here. Listing 18.17 shows a basic example of how
to use OPENXML.

Listing 18.17

DECLARE @hDoc int
EXEC sp_xml_preparedocument @hDoc output,
'<songs>
 <song><name>Somebody to Love</name></song>

Henderson_book.fm Page 700 Thursday, September 25, 2003 5:23 AM

Using OPENXML 701

 <song><name>These Are the Days of Our Lives</name></song>
 <song><name>Bicycle Race</name></song>
 <song><name>Who Wants to Live Forever</name></song>
 <song><name>I Want to Break Free</name></song>
 <song><name>Friends Will Be Friends</name></song>
</songs>'
SELECT * FROM OPENXML(@hdoc, '/songs/song', 2) WITH
 (name varchar(80))
EXEC sp_xml_removedocument @hDoc

(Results)

name
--
Somebody to Love
These Are the Days of Our Lives
Bicycle Race
Who Wants to Live Forever
I Want to Break Free
Friends Will Be Friends

To use OPENXML, follow these basic steps.

1. Call sp_xml_preparedocument to load the XML document into
memory. MSXML’s DOM parser is called to translate the document
into a tree of nodes that you can then access with an XPath query. A
pointer to this tree is returned by the procedure as an integer.

2. Issue a SELECT statement from OPENXML, passing in the handle
you received in step 1.

3. Include XPath syntax in the call to OPENXML in order to specify
exactly which nodes you want to access.

4. Optionally include a WITH clause that maps the XML document
into a specific table schema. This can be a full table schema as well as
a reference to a table itself.

OPENXML is extremely flexible, so several of these steps have varia-
tions and alternatives, but this is the basic process you follow to shred and
use an XML document with OPENXML.

Listing 18.18 presents a variation of the earlier query that employs a ta-
ble to define the schema used to map the document.

Henderson_book.fm Page 701 Thursday, September 25, 2003 5:23 AM

702 Chapter 18 SQLXML

Listing 18.18

USE tempdb
GO
create table songs (name varchar(80))
go
DECLARE @hDoc int
EXEC sp_xml_preparedocument @hDoc output,
'<songs>
 <song><name>Somebody to Love</name></song>
 <song><name>These Are the Days of Our Lives</name></song>
 <song><name>Bicycle Race</name></song>
 <song><name>Who Wants to Live Forever</name></song>
 <song><name>I Want to Break Free</name></song>
 <song><name>Friends Will Be Friends</name></song>
</songs>'
SELECT * FROM OPENXML(@hdoc, '/songs/song', 2) WITH songs
EXEC sp_xml_removedocument @hDoc
GO
DROP TABLE songs

(Results)

name
--
Somebody to Love
These Are the Days of Our Lives
Bicycle Race
Who Wants to Live Forever
I Want to Break Free
Friends Will Be Friends

You can also use the WITH clause to set up detailed mappings between
the XML document and the tables in your database, as shown in Listing 18.19.

Listing 18.19

DECLARE @hDoc int
EXEC sp_xml_preparedocument @hDoc output,
'<songs>
 <artist name="Johnny Hartman">
 <song> <name>It Was Almost Like a Song</name></song>

Henderson_book.fm Page 702 Thursday, September 25, 2003 5:23 AM

Using OPENXML 703

 <song> <name>I See Your Face Before Me</name></song>
 <song> <name>For All We Know</name></song>
 <song> <name>Easy Living</name></song>
 </artist>
 <artist name="Harry Connick, Jr.">
 <song> <name>Sonny Cried</name></song>
 <song> <name>A Nightingale Sang in Berkeley Square</name></song>
 <song> <name>Heavenly</name></song>
 <song> <name>You Didn''t Know Me When</name></song>
 </artist>
</songs>'
SELECT * FROM OPENXML(@hdoc, '/songs/artist/song', 2)
WITH (artist varchar(30) '../@name',
 song varchar(50) 'name')
EXEC sp_xml_removedocument @hDoc

(Results)

artist song
--------------------------- --------------------------------------
Johnny Hartman It Was Almost Like a Song
Johnny Hartman I See Your Face Before Me
Johnny Hartman For All We Know
Johnny Hartman Easy Living
Harry Connick, Jr. Sonny Cried
Harry Connick, Jr. A Nightingale Sang in Berkeley Square
Harry Connick, Jr. Heavenly
Harry Connick, Jr. You Didn't Know Me When

Note that attribute references are prefixed with the @ symbol. In List-
ing 18.19, we supply an XPath query that navigates the tree down to the
song element, then reference an attribute called name in song’s parent ele-
ment, artist. For the second column, we retrieve a child element of song
that’s also called name.

Listing 18.20 offers another example.

Listing 18.20

DECLARE @hDoc int
EXEC sp_xml_preparedocument @hDoc output,
'<songs>

Henderson_book.fm Page 703 Thursday, September 25, 2003 5:23 AM

704 Chapter 18 SQLXML

 <artist> <name>Johnny Hartman</name>
 <song> <name>It Was Almost Like a Song</name></song>
 <song> <name>I See Your Face Before Me</name></song>
 <song> <name>For All We Know</name></song>
 <song> <name>Easy Living</name></song>
 </artist>
 <artist> <name>Harry Connick, Jr.</name>
 <song> <name>Sonny Cried</name></song>
 <song> <name>A Nightingale Sang in Berkeley Square</name></song>
 <song> <name>Heavenly</name></song>
 <song> <name>You Didn''t Know Me When</name></song>
 </artist>
</songs>'
SELECT * FROM OPENXML(@hdoc, '/songs/artist/name', 2)
WITH (artist varchar(30) '.',
 song varchar(50) '../song/name')
EXEC sp_xml_removedocument @hDoc

(Results)

artist song
--------------------------- --------------------------------------
Johnny Hartman It Was Almost Like a Song
Harry Connick, Jr. Sonny Cried

Notice that we get only two rows. Why is that? It’s due to the fact that
our XPath pattern navigated to the artist/name node, of which there are
only two. In addition to getting each artist’s name element, we also grabbed
the name of its first song element. In the previous query, the XPath pattern
navigated us to the song element, of which there were eight, then refer-
enced each song’s parent node (its artist) via the XPath “..” designator.

Note the use in the above query of the XPath “.” specifier. This merely
references the current element. We need it here because we are changing the
name of the current element from name to artist. Keep this technique in
mind when you want to rename an element you’re returning via OPENXML.

The flags Parameter

OPENXML’s flags parameter allows you to specify whether OPENXML
should process the document in an attribute-centric fashion, an element-

Henderson_book.fm Page 704 Thursday, September 25, 2003 5:23 AM

Using OPENXML 705

centric fashion, or some combination of the two. Thus far, we’ve been spec-
ifying 2 for the flags parameter, which specifies element-centric mapping.
Listing 18.21 shows an example of attribute-centric mapping.

Listing 18.21

DECLARE @hDoc int
EXEC sp_xml_preparedocument @hDoc output,
'<songs>
 <artist name="Johnny Hartman">
 <song name="It Was Almost Like a Song"/>
 <song name="I See Your Face Before Me"/>
 <song name="For All We Know"/>
 <song name="Easy Living"/>
 </artist>
 <artist name="Harry Connick, Jr.">
 <song name="Sonny Cried"/>
 <song name="A Nightingale Sang in Berkeley Square"/>
 <song name="Heavenly"/>
 <song name="You Didn''t Know Me When"/>
 </artist>
</songs>'
SELECT * FROM OPENXML(@hdoc, '/songs/artist/song', 1)
WITH (artist varchar(30) '../@name',
 song varchar(50) '@name')
EXEC sp_xml_removedocument @hDoc

(Results)

artist song
--------------------------- --------------------------------------
Johnny Hartman It Was Almost Like a Song
Johnny Hartman I See Your Face Before Me
Johnny Hartman For All We Know
Johnny Hartman Easy Living
Harry Connick, Jr. Sonny Cried
Harry Connick, Jr. A Nightingale Sang in Berkeley Square
Harry Connick, Jr. Heavenly
Harry Connick, Jr. You Didn't Know Me When

Henderson_book.fm Page 705 Thursday, September 25, 2003 5:23 AM

706 Chapter 18 SQLXML

Edge Table Format

You can completely omit OPENXML’s WITH clause in order to retrieve a
portion of an XML document in “edge table format”—essentially a two-di-
mensional representation of the XML tree. Listing 18.22 provides an example.

Listing 18.22

DECLARE @hDoc int
EXEC sp_xml_preparedocument @hDoc output,
'<songs>
 <artist name="Johnny Hartman">
 <song> <name>It Was Almost Like a Song</name></song>
 <song> <name>I See Your Face Before Me</name></song>
 <song> <name>For All We Know</name></song>
 <song> <name>Easy Living</name></song>
 </artist>
 <artist name="Harry Connick, Jr.">
 <song> <name>Sonny Cried</name></song>
 <song> <name>A Nightingale Sang in Berkeley Square</name></song>
 <song> <name>Heavenly</name></song>
 <song> <name>You Didn''t Know Me When</name></song>
 </artist>
</songs>'
SELECT * FROM OPENXML(@hdoc, '/songs/artist/song', 2)
EXEC sp_xml_removedocument @hDoc

(Results abridged)

id parentid nodetype localname
-------------------- -------------------- ----------- -----------
4 2 1 song
5 4 1 name
22 5 3 #text
6 2 1 song
7 6 1 name
23 7 3 #text
8 2 1 song
9 8 1 name
24 9 3 #text
10 2 1 song
11 10 1 name
25 11 3 #text
14 12 1 song

Henderson_book.fm Page 706 Thursday, September 25, 2003 5:23 AM

Using OPENXML 707

15 14 1 name
26 15 3 #text
16 12 1 song
17 16 1 name
27 17 3 #text
18 12 1 song
19 18 1 name
28 19 3 #text
20 12 1 song
21 20 1 name
29 21 3 #text

Inserting Data with OPENXML

Given that it’s a rowset function, it’s natural that you’d want to insert the re-
sults of a SELECT against OPENXML into another table. There are a cou-
ple of ways to approach this. First, you could execute a separate pass against
the XML document for each piece of it you wanted to extract. You would
execute an INSERT…SELECT FROM OPENXML for each table you
wanted to insert rows into, grabbing a different section of the XML docu-
ment with each pass, as demonstrated in Listing 18.23.

Listing 18.23

USE tempdb
GO
CREATE TABLE Artists
(ArtistId varchar(5),
 Name varchar(30))
GO
CREATE TABLE Songs
(ArtistId varchar(5),
 SongId int,
 Name varchar(50))
GO

DECLARE @hDoc int
EXEC sp_xml_preparedocument @hDoc output,
'<songs>
 <artist id="JHART" name="Johnny Hartman">
 <song id="1" name="It Was Almost Like a Song"/>
 <song id="2" name="I See Your Face Before Me"/>
 <song id="3" name="For All We Know"/>

Henderson_book.fm Page 707 Thursday, September 25, 2003 5:23 AM

708 Chapter 18 SQLXML

 <song id="4" name="Easy Living"/>
 </artist>
 <artist id="HCONN" name="Harry Connick, Jr.">
 <song id="1" name="Sonny Cried"/>
 <song id="2" name="A Nightingale Sang in Berkeley Square"/>
 <song id="3" name="Heavenly"/>
 <song id="4" name="You Didn''t Know Me When"/>
 </artist>
</songs>'
INSERT Artists (ArtistId, Name)
SELECT id,name
FROM OPENXML(@hdoc, '/songs/artist', 1)
WITH (id varchar(5) '@id',
 name varchar(30) '@name')

INSERT Songs (ArtistId, SongId, Name)
SELECT artistid, id,name
FROM OPENXML(@hdoc, '/songs/artist/song', 1)
WITH (artistid varchar(5) '../@id',
 id int '@id',
 name varchar(50) '@name')
EXEC sp_xml_removedocument @hDoc
GO
SELECT * FROM Artists
SELECT * FROM Songs
GO
DROP TABLE Artists, Songs

(Results)

ArtistId Name
-------- ------------------------------
JHART Johnny Hartman
HCONN Harry Connick, Jr.

ArtistId SongId Name
-------- ----------- ---
JHART 1 It Was Almost Like a Song
JHART 2 I See Your Face Before Me
JHART 3 For All We Know
JHART 4 Easy Living
HCONN 1 Sonny Cried
HCONN 2 A Nightingale Sang in Berkeley Square
HCONN 3 Heavenly
HCONN 4 You Didn't Know Me When

Henderson_book.fm Page 708 Thursday, September 25, 2003 5:23 AM

Using OPENXML 709

As you can see, we make a separate call to OPENXML for each table.
The tables are normalized; the XML document is not, so we shred it into
multiple tables. Listing 18.24 shows another way to accomplish the same
thing that doesn’t require multiple calls to OPENXML.

Listing 18.24

USE tempdb
GO
CREATE TABLE Artists
(ArtistId varchar(5),
 Name varchar(30))
GO
CREATE TABLE Songs
(ArtistId varchar(5),
 SongId int,
 Name varchar(50))
GO
CREATE VIEW ArtistSongs AS
SELECT a.ArtistId,
 a.Name AS ArtistName,
 s.SongId,
 s.Name as SongName
FROM Artists a JOIN Songs s
ON (a.ArtistId=s.ArtistId)
GO
CREATE TRIGGER ArtistSongsInsert ON ArtistSongs INSTEAD OF
 INSERT AS
INSERT Artists
SELECT DISTINCT ArtistId, ArtistName FROM inserted
INSERT Songs
SELECT ArtistId, SongId, SongName FROM inserted
GO

DECLARE @hDoc int
EXEC sp_xml_preparedocument @hDoc output,
'<songs>
 <artist id="JHART" name="Johnny Hartman">
 <song id="1" name="It Was Almost Like a Song"/>
 <song id="2" name="I See Your Face Before Me"/>
 <song id="3" name="For All We Know"/>
 <song id="4" name="Easy Living"/>
 </artist>
 <artist id="HCONN" name="Harry Connick, Jr.">

Henderson_book.fm Page 709 Thursday, September 25, 2003 5:23 AM

710 Chapter 18 SQLXML

 <song id="1" name="Sonny Cried"/>
 <song id="2" name="A Nightingale Sang in Berkeley Square"/>
 <song id="3" name="Heavenly"/>
 <song id="4" name="You Didn''t Know Me When"/>
 </artist>
</songs>'
INSERT ArtistSongs (ArtistId, ArtistName, SongId, SongName)
SELECT artistid, artistname, songid, songname
FROM OPENXML(@hdoc, '/songs/artist/song', 1)
WITH (artistid varchar(5) '../@id',
 artistname varchar(30) '../@name',
 songid int '@id',
 songname varchar(50) '@name')

EXEC sp_xml_removedocument @hDoc
GO
SELECT * FROM Artists
SELECT * FROM Songs
GO
DROP VIEW ArtistSongs
GO
DROP TABLE Artists, Songs

(Results)

ArtistId Name
-------- ------------------------------
HCONN Harry Connick, Jr.
JHART Johnny Hartman

ArtistId SongId Name
-------- ----------- ---
JHART 1 It Was Almost Like a Song
JHART 2 I See Your Face Before Me
JHART 3 For All We Know
JHART 4 Easy Living
HCONN 1 Sonny Cried
HCONN 2 A Nightingale Sang in Berkeley Square
HCONN 3 Heavenly
HCONN 4 You Didn't Know Me When

This technique uses a view and an INSTEAD OF trigger to alleviate the
need for two passes with OPENXML. We use a view to simulate the denor-
malized layout of the XML document, then set up an INSTEAD OF trigger

Henderson_book.fm Page 710 Thursday, September 25, 2003 5:23 AM

Accessing SQL Server over HTTP 711

to allow us to insert the data in the XML document “into” this view. The
trigger performs the actual work of shredding, only it does so much more
efficiently than calling OPENXML twice. It makes two passes over the logi-
cal inserted table and splits the columns contained therein (which mirror
those of the view) into two separate tables.

Accessing SQL Server over HTTP

To get started accessing SQL Server via HTTP, you should set up an IIS vir-
tual directory using the Configure IIS Support menu option in the SQLXML
program folder. Of course, you can retrieve XML data from SQL Server
without setting up a virtual directory (e.g., by using ADO or OLE DB); I’m
referring exclusively to retrieving XML data from SQL Server via HTTP.

Configuring a virtual directory allows you to work with SQL Server’s XML
features via HTTP. You use a virtual directory to establish a link between a
SQL Server database and a segment of a URL. It provides a navigation path
from the root directory on your Web server to a database on your SQL Server.

SQL Server’s ability to publish data over HTTP is made possible through
SQLISAPI, an Internet Server API (ISAPI) extension that ships with the
product. SQLISAPI uses SQLOLEDB, SQL Server’s native OLE DB pro-
vider, to access the database associated with a virtual directory and return re-
sults to the client.

Client applications have four methods of requesting data from SQL
Server over HTTP. These can be broken down into two broad types: those
more suitable for private intranet access because of security concerns, and
those safe to use on the public Internet.

Private Intranet

1. Post an XML query template to SQLISAPI.
2. Send a SELECT…FOR XML query string in a URL.

Public Internet

3. Specify a server-side XML schema in a virtual root.
4. Specify a server-side XML query template in a virtual root.

Due to their open-ended nature, methods 1 and 2 could pose security
risks over the public Internet but are perfectly valid on corporate or private
intranets. Normally, Web applications use server-side schemas and query

Henderson_book.fm Page 711 Thursday, September 25, 2003 5:23 AM

712 Chapter 18 SQLXML

templates to make XML data accessible to the outside world in a controlled
fashion.

Configuring a Virtual Directory

Load the Configure IIS Support utility in the SQLXML folder under Start |
Programs. You should see the IIS servers configured on the current ma-
chine. Click the plus sign to the left of your server name to expand it. (If
your server isn’t listed—for example, if it’s a remote server—right-click the
IIS Virtual Directory Manager node and select Connect to connect to your
server.) To add a new virtual directory, right-click the Default Web Site
node and select New | Virtual Directory. You should then see the New Vir-
tual Directory Properties dialog.

Specifying a Virtual Directory Name and Path

The Virtual Directory Name entry box is where you specify the name of the
new virtual directory. This is the name that users will include in a URL to
access the data exposed by the virtual directory, so it’s important to make it
descriptive. A common convention is to name virtual directories after the
databases they reference. To work through the rest of the examples in the
chapter, specify Northwind as the name of the new virtual directory.

Though Local Path will sometimes not be used, it’s required nonethe-
less. In a normal ASP or HTML application, this would be the path where
the source files themselves reside. In SQLISAPI applications, this folder
does not necessarily need to contain anything, but it must exist neverthe-
less. On NTFS partitions, you must also make sure that users have at least
read access to this folder in order to use the virtual directory. You configure
which user account will be used to access the application (and thus will
need access to the folder) in the dialog’s Security page.

Click the Security tab to select the authentication mode you’d like to
use. You can use a specific user account, Windows Integrated Authentica-
tion, or Basic (clear text) Authentication. Select the option that matches
your usage scenario most closely; Windows Integrated Authentication will
likely be the best choice for working through the demos in this chapter.

Next, click the Data Source page tab. This is where you set the SQL
Server and the database that the virtual directory references. Select your
SQL Server from the list and specify Northwind as the database name.

Go to the Virtual Names table and set up two virtual names, templates
and schemas. Create two folders under Northwind named Templates and
Schemas so that each of these virtual names can have its own local folder.
Set the type for schemas to schema and the type for templates to template.

Henderson_book.fm Page 712 Thursday, September 25, 2003 5:23 AM

Accessing SQL Server over HTTP 713

Each of these provides a navigation path from a URL to the files in its local
folder. We’ll use them later.

The last dialog page we’re concerned with is the Settings page. Click it,
then make sure every checkbox on it is checked. We want to allow all of
these options so that we may test them later in the chapter. The subsections
below provide brief descriptions of each of the options on the Settings page.

Allow sql=… or template=… or URL queries

When this option is enabled, you can execute queries posted to a URL (via
an HTTP GET or POST command) as sql= or template= parameters. URL
queries allow users to specify a complete Transact-SQL query via a URL.
Special characters are replaced with placeholders, but, essentially, the query
is sent to the server as is, and its results are returned over HTTP. Note that
this option allows users to execute arbitrary queries against the virtual root
and database, so you shouldn’t enable it for anything but intranet use. Go
ahead and enable it for now so that we can try it out later.

Selecting this option disables the Allow template=… containing update-
grams only option because you can always post XML templates with up-
dategrams when this option is selected. The Allow template=… containing
updategrams only option permits XML templates (that contain only update-
grams) to be posted to a URL. Since this disallows SQL and XPath queries
from existing in a template, it provides some limited security.

Template queries are by far the most popular method of retrieving XML
data from SQL Server over HTTP. XML documents that store query tem-
plates—generic parameterized queries with placeholders for parameters—
reside on the server and provide a controlled access to the underlying data.
The results from template queries are returned over HTTP to the user.

Allow XPath

When Allow XPath is enabled, users can use a subset of the XPath language
to retrieve data from SQL Server based on an annotated schema. Annotated
schemas are stored on a Web server as XML documents and map XML ele-
ments and attributes to the data in the database referenced by a virtual di-
rectory. XPath queries allow the user to specify the data defined in an
annotated schema to return.

Allow POST

HTTP supports the notion of sending data to a Web server via its POST com-
mand. When Allow POST is enabled, you can post a query template (usually

Henderson_book.fm Page 713 Thursday, September 25, 2003 5:23 AM

714 Chapter 18 SQLXML

implemented as a hidden form field on a Web page) to a Web server via HTTP.
This causes the query to be executed and returns the results back to the
client.

As I mentioned earlier, the open-endedness of this usually limits its use
to private intranets. Malicious users could form their own templates and
post them over HTTP to retrieve data to which they aren’t supposed to have
access or, worse yet, make changes to it.

Run on the client

This option specifies that XML formatting (e.g., FOR XML) is to be done
on the client side. Enabling this option allows you to offload to the client the
work of translating a rowset into XML for HTTP queries.

Expose runtime errors as HTTP error

This option controls whether query errors in an XML template are returned in
the HTTP header or as part of the generated XML document. When this op-
tion is enabled and a query in a template fails, HTTP error 512 is returned and
error descriptions are returned in the HTTP header. When it’s disabled and a
template query fails, the HTTP success code, 200, is returned, and the error
descriptions are returned as processing instructions inside the XML document.

Enable all the options on the Settings page except the last two de-
scribed above and click OK to create your new virtual directory.

TIP: A handy option on the Advanced tab is Disable caching of mapping sche-
mas. Normally, mapping schemas are cached in memory the first time they’re
used and accessed from the cache thereafter. While developing a mapping
schema, you’ll likely want to disable this so that the schema will be reloaded
each time you test it.

URL Queries

The facility that permits SQL Server to be queried via HTTP resides in
SQLXML’s ISAPI extension DLL, SQLISn.DLL, commonly referred to as
SQLISAPI. Although the Configure IIS Support tool provides a default,
you can configure the exact extension DLL uses when you set up a virtual
directory for use by HTTP queries.

Henderson_book.fm Page 714 Thursday, September 25, 2003 5:23 AM

Using URL Queries 715

If you attach to IIS (the executable name is inetinfo.exe) with WinDbg
prior to running any HTTP queries, you’ll see ModLoad messages for
SQLISn.DLL as well as one or two other DLLs. An ISAPI extension DLL
is not loaded until the first time it’s called.

Architecturally, here’s what happens when you execute a basic URL
query.

1. You supply the query as a URL in a Web browser.
2. It travels from your browser to the Web server as an HTTP GET

request.
3. The virtual directory specified in your query indicates which exten-

sion DLL should be called to process the URL. IIS loads the appro-
priate extension and passes your query to it.

4. SQLISn.DLL, the SQLISAPI extension DLL, gathers the connec-
tion, authentication, and database information from the specified
virtual directory entry, connects to the appropriate SQL Server
and database, and runs the specified query. If the query was
passed as a plain T-SQL query, it comes into the server as a lan-
guage event. If it was passed as a template query, it comes in
as an RPC event.

5. The server gathers the requested data and returns it to
SQLISn.DLL.

6. The ISAPI extension returns the result data to the Web server,
which then, in turn, sends it to the client browser that requested it.
Thus, the original HTTP GET request is completed.

Using URL Queries

The easiest way to test the virtual directory you built earlier is to submit a
URL query that uses it from an XML-enabled browser such as Internet Ex-
plorer. URL queries take this form:

http://localhost/Northwind?sql=SELECT+*+FROM+
Customers+FOR+XML+AUTO &root=Customers

NOTE: As with all URLs, the URL listed above should be typed on one line.
Page width restrictions may force some of the URLs listed in this book to span
multiple lines, but a URL should always be typed on a single line.

Henderson_book.fm Page 715 Thursday, September 25, 2003 5:23 AM

716 Chapter 18 SQLXML

Here, localhost is the name of the Web server. It could just as easily be a
fully qualified DNS domain name such as http://www.khen.com. Northwind
is the virtual directory name we created earlier.

A question mark separates the URL from its parameters. Multiple pa-
rameters are separated by ampersands. The first parameter we pass here is
named sql. It specifies the query to run. The second parameter specifies
the name of the root element for the XML document that will be returned.
By definition, you get just one of these per document. Failure to specify a
root element results in an error if your query returns more than one top-
level element.

To see how this works, submit the URL shown in Listing 18.25 from
your Web browser. (Be sure to change localhost to the correct name of your
Web server if it resides on a different machine).

Listing 18.25

http://localhost/Northwind?sql=SELECT+*+FROM+Customers+WHERE
+CustomerId='ALFKI'+FOR+XML+AUTO

(Results)

<Customers CustomerID="ALFKI" CompanyName="Alfreds Futterkiste"
ContactName="Maria Anders" ContactTitle="Sales Representative"
Address="Obere Str. 57" City="Berlin" PostalCode="12209"
Country="Germany" Phone="030-0074321" Fax="030-0076545" />

Notice that we left off the root element specification. Look at what hap-
pens when we bring back more than one row (Listing 18.26).

Listing 18.26

http://localhost/Northwind?sql=SELECT+*+FROM+Customers+
WHERE+CustomerId='ALFKI'+OR+CustomerId='ANATR'+FOR+XML+AUTO

(Results abridged)

The XML page cannot be displayed
Only one top level element is allowed in an XML document.
Line 1, Position 243

Henderson_book.fm Page 716 Thursday, September 25, 2003 5:23 AM

Using URL Queries 717

Since we’re returning multiple top-level elements (two, to be exact),
our XML document has two root elements named Customers, which, of
course, isn’t allowed since it isn’t well-formed XML. To remedy the situa-
tion, we need to specify a root element. This element can be named any-
thing—it serves only to wrap the rows returned by FOR XML so that we
have a well-formed document. Listing 18.27 shows an example.

Listing 18.27

http://localhost/Northwind?sql=SELECT+*+FROM+Customers+WHERE
+CustomerId='ALFKI'+OR+CustomerId='ANATR'+FOR+XML+AUTO
&root=CustomerList

(Results)

<?xml version="1.0" encoding="utf-8" ?>
<CustomerList>
 <Customers CustomerID="ALFKI" CompanyName="Alfreds Futterkiste"
 ContactName="Maria Anders" ContactTitle="Sales Representative"
 Address="Obere Str. 57" City="Berlin" PostalCode="12209"
 Country="Germany" Phone="030-0074321" Fax="030-0076545" />
 <Customers CustomerID="ANATR" CompanyName=
 "Ana Trujillo Emparedados y helados" ContactName="Ana Trujillo"
 ContactTitle="Owner" Address="Avda. de la Constitución 2222"
 City="México D.F." PostalCode="05021" Country="Mexico"
 Phone="(5) 555-4729" Fax="(5) 555-3745" />
</CustomerList>

You can also supply the root element yourself as part of the sql parame-
ter, as shown in Listing 18.28.

Listing 18.28

http://localhost/Northwind?sql=SELECT+'<CustomerList>';
SELECT+*+FROM+Customers+WHERE+CustomerId='ALFKI'+OR
+CustomerId='ANATR'+FOR+XML+AUTO;
SELECT+'</CustomerList>';

(Results formatted)

Henderson_book.fm Page 717 Thursday, September 25, 2003 5:23 AM

718 Chapter 18 SQLXML

<CustomerList>
 <Customers CustomerID="ALFKI" CompanyName="Alfreds Futterkiste"
 ContactName="Maria Anders" ContactTitle="Sales Representative"
 Address="Obere Str. 57" City="Berlin" PostalCode="12209"
 Country="Germany" Phone="030-0074321" Fax="030-0076545" />
 <Customers CustomerID="ANATR" CompanyName=
 "Ana Trujillo Emparedados y helados" ContactName="Ana Trujillo"
 ContactTitle="Owner" Address="Avda. de la Constitución 2222"
 City="México D.F." PostalCode="05021" Country="Mexico"
 Phone="(5) 555-4729" Fax="(5) 555-3745" />
</CustomerList>

The sql parameter of this URL actually contains three queries. The first
one generates an opening tag for the root element. The second is the query
itself, and the third generates a closing tag for the root element. We sepa-
rate the individual queries with semicolons.

As you can see, FOR XML returns XML document fragments, so you’ll
need to provide a root element in order to produce a well-formed document.

Special Characters

Certain characters that are perfectly valid in Transact-SQL can cause prob-
lems in URL queries because they have special meanings within a URL.
You’ve already noticed that we’re using the plus symbol (+) to signify a
space character. Obviously, this precludes the direct use of + in the query it-
self. Instead, you must encode characters that have special meaning within
a URL query so that SQLISAPI can properly translate them before passing
on the query to SQL Server. Encoding a special character amounts to spec-
ifying a percent sign (%) followed by the character’s ASCII value in hexa-
decimal. Table 18.3 lists the special characters recognized by SQLISAPI
and their corresponding values.

Here’s a URL query that illustrates how to encode special characters.

http://localhost/Northwind?sql=SELECT+'<CustomerList>';SELECT
 +*+FROM+Customers+ WHERE+CustomerId+LIKE+'A%25'+FOR+XML+AUTO;
 SELECT+'</CustomerList>';

This query specifies a LIKE predicate that includes an encoded percent
sign (%), Transact-SQL’s wildcard symbol. Hexadecimal 25 (decimal 37) is
the ASCII value of the percent sign, so we encode it as %25.

Henderson_book.fm Page 718 Thursday, September 25, 2003 5:23 AM

Using URL Queries 719

Style Sheets

In addition to the sql and root parameters, a URL query can also include
the xsl parameter in order to specify an XML style sheet to use to translate
the XML document that’s returned by the query into a different format.
The most common use of this feature is to translate the document into
HTML. This allows you to view the document using browsers that aren’t
XML aware and gives you more control over the display of the document in
those that are. Here’s a URL query that includes the xsl parameter:

http://localhost/Northwind?sql=SELECT+CustomerId,+CompanyName+FROM
 +Customers+FOR+XML+AUTO&root=CustomerList&xsl=CustomerList.xsl

Listing 18.29 shows the XSL style sheet it references and the output
produced.

Listing 18.29

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
 <xsl:template match="/">
 <HTML>
 <BODY>
 <TABLE border="1">
 <TR>
 <TD>Customer ID</TD>
 <TD>Company Name</TD>

Table 18.3 Special Characters and Their Hexadecimal Values

Character Hexadecimal Value

+ 2B

& 26

? 3F

% 25

/ 2F

23

Henderson_book.fm Page 719 Thursday, September 25, 2003 5:23 AM

720 Chapter 18 SQLXML

 </TR>
 <xsl:for-each select="CustomerList/Customers">
 <TR>
 <TD>
 <xsl:value-of select="@CustomerId"/>
 </TD>
 <TD>
 <xsl:value-of select="@CompanyName"/>
 </TD>
 </TR>
 </xsl:for-each>
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

(Results abridged)

Content Type

By default, SQLISAPI returns the results of a URL query with the appro-
priate type specified in the header so that a browser can properly render it.
When FOR XML is used in the query, this is text/xml unless the xsl at-

Customer ID Company Name

ALFKI Alfreds Futterkiste
ANATR Ana Trujillo Emparedados y helados
ANTON Antonio Moreno TaquerÃa
AROUT Around the Horn
BERGS Berglunds snabbkÃ¶p
BLAUS Blauer See Delikatessen
BLONP Blondesddsl pÃ¨re et fils
WARTH Wartian Herkku
WELLI Wellington Importadora
WHITC White Clover Markets
WILMK Wilman Kala
WOLZA Wolski Zajazd

Henderson_book.fm Page 720 Thursday, September 25, 2003 5:23 AM

Using URL Queries 721

tribute specifies a style sheet that translates the XML document into
HTML. In that case, text/html is returned.

You can force the content type using the contenttype URL query pa-
rameter, like this:

http://localhost/Northwind?sql=SELECT+CustomerId,+CompanyName+FROM
 +Customers+FOR+XML+AUTO&root=CustomerList&xsl=CustomerList.xsl
 &contenttype=text/xml

Here, we’ve specified the style sheet from the previous example in order
to cause the content type to default to text/html. Then we override this de-
fault by specifying a contenttype parameter of text/xml. The result is an XML
document containing the translated result set, as shown in Listing 18.30.

Listing 18.30

<HTML>
 <BODY>
 <TABLE border="1">
 <TR>
 <TD>
 Customer ID
 </TD>
 <TD>
 Company Name
 </TD>
 </TR>
 <TR>
 <TD>ALFKI</TD>
 <TD>Alfreds Futterkiste</TD>
 </TR>
 <TR>
 <TD>ANATR</TD>
 <TD>Ana Trujillo Emparedados y helados</TD>
 </TR>
 <TR>
 <TD>WILMK</TD>
 <TD>Wilman Kala</TD>
 </TR>
 <TR>
 <TD>WOLZA</TD>
 <TD>Wolski Zajazd</TD>
 </TR>

Henderson_book.fm Page 721 Thursday, September 25, 2003 5:23 AM

722 Chapter 18 SQLXML

 </TABLE>
 </BODY>
</HTML>

So, even though the document consists of well-formed HTML, it’s ren-
dered as an XML document because we’ve forced the content type.

Non-XML Results

Being able to specify the content type comes in particularly handy when
working with XML fragments in an XML-aware browser. As I mentioned
earlier, executing a FOR XML query with no root element results in an er-
ror. You can, however, work around this by forcing the content to HTML,
like this:

http://localhost/Northwind?sql=SELECT+*+FROM+Customers+WHERE+
 CustomerId='ALFKI'+OR+CustomerId='ANATR'+FOR+XML+AUTO
 &contenttype=text/html

If you load this URL in a browser, you’ll probably see a blank page be-
cause most browsers ignore tags that they don’t understand. However, you
can view the source of the Web page and you’ll see an XML fragment re-
turned as you’d expect. This would be handy in situations where you’re
communicating with SQLISAPI using HTTP from outside of a browser—
from an application of some sort. You could return the XML fragment to
the client, then use client-side logic to apply a root element and/or process
the XML further.

SQLISAPI also allows you to omit the FOR XML clause in order to re-
turn a single column from a table, view, or table-valued function as a plain
text stream, as shown in Listing 18.31.

Listing 18.31

http://localhost/Northwind?sql=SELECT+CAST(CustomerId+AS+
 char(10))+AS+CustomerId+FROM+Customers+ORDER+BY+CustomerId
 &contenttype=text/html

(Results)

Henderson_book.fm Page 722 Thursday, September 25, 2003 5:23 AM

Using URL Queries 723

ALFKI ANATR ANTON AROUT BERGS BLAUS BLONP BOLID BONAP BOTTM BSBEV
CACTU CENTC CHOPS COMMI CONSH DRACD DUMON EASTC ERNSH FAMIA FISSA
FOLIG FOLKO FRANK FRANR FRANS FURIB GALED GODOS GOURL GREAL GROSR
HANAR HILAA HUNGC HUNGO ISLAT KOENE LACOR LAMAI LAUGB LAZYK LEHMS
LETSS LILAS LINOD LONEP MAGAA MAISD MEREP MORGK NORTS OCEAN OLDWO
OTTIK PARIS PERIC PICCO PRINI QUEDE QUEEN QUICK RANCH RATTC REGGC
RICAR RICSU ROMEY SANTG SAVEA SEVES SIMOB SPECD SPLIR SUPRD THEBI
THECR TOMSP TORTU TRADH TRAIH VAFFE VICTE VINET WANDK WARTH WELLI
WHITC WILMK WOLZA

Note that SQLISAPI doesn’t support returning multicolumn results
this way. That said, this is still a handy way to quickly return a simple data
list.

Stored Procedures

You can execute stored procedures via URL queries just as you can other
types of Transact-SQL queries. Of course, this procedure needs to return its
result using FOR XML if you intend to process it as XML in the browser or
on the client side. The stored procedure in Listing 18.32 illustrates.

Listing 18.32

CREATE PROC ListCustomersXML
@CustomerId varchar(10)='%',
@CompanyName varchar(80)='%'
AS
SELECT CustomerId, CompanyName
FROM Customers
WHERE CustomerId LIKE @CustomerId
AND CompanyName LIKE @CompanyName
FOR XML AUTO

Once your procedure correctly returns results in XML format, you can
call it from a URL query using the Transact-SQL EXEC command. List-
ing 18.33 shows an example of a URL query that calls a stored procedure us-
ing EXEC.

Henderson_book.fm Page 723 Thursday, September 25, 2003 5:23 AM

724 Chapter 18 SQLXML

Listing 18.33

http://localhost/Northwind?sql=EXEC+ListCustomersXML
 +@CustomerId='A%25',@CompanyName='An%25'&root=CustomerList

(Results)

<?xml version="1.0" encoding="utf-8" ?>
<CustomerList>
 <Customers CustomerId="ANATR" CompanyName="Ana Trujillo
 Emparedados y helados" />
 <Customers CustomerId="ANTON" CompanyName="Antonio Moreno
 Taquería" />
</CustomerList>

Notice that we specify the Transact-SQL wildcard character “%” by us-
ing its encoded equivalent, %25. This is necessary, as I said earlier, because
% has special meaning in a URL query.

TIP: You can also use the ODBC CALL syntax to call a stored procedure from
a URL query. This executes the procedures via an RPC event on the server,
which is generally faster and more efficient than normal T-SQL language
events. On high-volume Web sites, the small difference in performance this
makes can add up quickly.

Here are a couple of URL queries that use the ODBC CALL syntax:

http://localhost/Northwind?sql={CALL+ListCustomersXML}+
 &root=CustomerList

http://localhost/Northwind?sql={CALL+ListCustomersXML('ALFKI')}+
 &root=CustomerList

If you submit one of these URLs from your Web browser while you have a
Profiler trace running that includes the RPC:Starting event, you should see an
RPC:Starting event for the procedure. This indicates that the procedure is be-
ing called via the more efficient RPC mechanism rather than via a language
event.

See the Template Queries section below for more information on making
RPCs from SQLXML.

Henderson_book.fm Page 724 Thursday, September 25, 2003 5:23 AM

Template Queries 725

Template Queries

A safer and more widely used technique for retrieving data over HTTP is to
use server-side XML templates that encapsulate Transact-SQL queries. Be-
cause these templates are stored on the Web server and referenced via a
virtual name, the end users never see the source code. The templates are
XML documents based on the XML-SQL namespace and function as a
mechanism for translating a URL into a query that SQL Server can process.
As with plain URL queries, results from template queries are returned as
either XML or HTML.

Listing 18.34 shows a simple XML query template.

Listing 18.34

<?xml version='1.0' ?>
<CustomerList xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
 <sql:query>
 SELECT CustomerId, CompanyName
 FROM Customers
 FOR XML AUTO
 </sql:query>
</CustomerList>

Note the use of the sql namespace prefix with the query itself. This is
made possible by the namespace reference on the second line of the tem-
plate (bolded).

Here we’re merely returning two columns from the Northwind Cus-
tomers table, as we’ve done several times in this chapter. We include FOR
XML AUTO to return the data as XML. The URL shown in Listing 18.35
uses the template, along with the data it returns.

Listing 18.35

http://localhost/Northwind/templates/CustomerList.XML

(Results abridged)

<?xml version="1.0" ?>
<CustomerList xmlns:sql="urn:schemas-microsoft-com:xml-sql">

Henderson_book.fm Page 725 Thursday, September 25, 2003 5:23 AM

726 Chapter 18 SQLXML

 <Customers CustomerId="ALFKI" CompanyName=
 "Alfreds Futterkiste" />
 <Customers CustomerId="VAFFE" CompanyName="Vaffeljernet" />
 <Customers CustomerId="VICTE" CompanyName=
 "Victuailles en stock" />
 <Customers CustomerId="VINET" CompanyName=
 "Vins et alcools Chevalier" />
 <Customers CustomerId="WARTH" CompanyName="Wartian Herkku" />
 <Customers CustomerId="WELLI" CompanyName=
 "Wellington Importadora" />
 <Customers CustomerId="WHITC" CompanyName=
 "White Clover Markets" />
 <Customers CustomerId="WILMK" CompanyName="Wilman Kala" />
 <Customers CustomerId="WOLZA" CompanyName="Wolski Zajazd" />
</CustomerList>

Notice that we’re using the templates virtual name that we created un-
der the Northwind virtual directory earlier.

Parameterized Templates

You can also create parameterized XML query templates that permit the
user to supply parameters to the query when it’s executed. You define pa-
rameters in the header of the template, which is contained in its sql:header
element. Each parameter is defined using the sql:param tag and can include
an optional default value. Listing 18.36 presents an example.

Listing 18.36

<?xml version='1.0' ?>
<CustomerList xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
 <sql:header>
 <sql:param name='CustomerId'>%</sql:param>
 </sql:header>
 <sql:query>
 SELECT CustomerId, CompanyName
 FROM Customers
 WHERE CustomerId LIKE @CustomerId
 FOR XML AUTO
 </sql:query>
</CustomerList>

Henderson_book.fm Page 726 Thursday, September 25, 2003 5:23 AM

Template Queries 727

Note the use of sql:param to define the parameter. Here, we give the
parameter a default value of % since we’re using it in a LIKE predicate in
the query. This means that we list all customers if no value is specified for
the parameter.

Note that SQLISAPI is smart enough to submit a template query to the
server as an RPC when you define query parameters. It binds the parame-
ters you specify in the template as RPC parameters and sends the query to
SQL Server using RPC API calls. This is more efficient than using T-SQL
language events and should result in better performance, particularly on
systems with high throughput.

Listing 18.37 gives an example of a URL that specifies a parameterized
template query, along with its results.

Listing 18.37

http://localhost/Northwind/Templates/CustomerList2.XML?
 CustomerId=A%25

(Results)

<?xml version="1.0" ?>
<CustomerList xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Customers CustomerId="ALFKI" CompanyName=
 "Alfreds Futterkiste" />
 <Customers CustomerId="ANATR" CompanyName=
 "Ana Trujillo Emparedados y helados" />
 <Customers CustomerId="ANTON" CompanyName=
 "Antonio Moreno Taquería" />
 <Customers CustomerId="AROUT" CompanyName="Around the Horn" />
</CustomerList>

Style Sheets

As with regular URL queries, you can specify a style sheet to apply to a tem-
plate query. You can do this in the template itself or in the URL that accesses
it. Here’s an example of a URL that applies a style sheet to a template query:

http://localhost/Northwind/Templates/CustomerList3.XML
 ?xsl=Templates/CustomerList3.xsl&contenttype=text/html

Note the use of the contenttype parameter to force the output to be
treated as HTML (bolded). We do this because we know that the style sheet

Henderson_book.fm Page 727 Thursday, September 25, 2003 5:23 AM

728 Chapter 18 SQLXML

we’re applying translates the XML returned by SQL Server into an HTML
table.

We include the relative path from the virtual directory to the style sheet
because it’s not automatically located in the Templates folder even though
the XML document is located there. The path specifications for a template
query and its parameters are separate from one another.

As I’ve mentioned, the XML-SQL namespace also supports specifying
the style sheet in the template itself. Listing 18.38 shows a template that
specifies a style sheet.

Listing 18.38

<?xml version='1.0' ?>
<CustomerList xmlns:sql='urn:schemas-microsoft-com:xml-sql'
 sql:xsl='CustomerList3.xsl'>
 <sql:query>
 SELECT CustomerId, CompanyName
 FROM Customers
 FOR XML AUTO
 </sql:query>
</CustomerList>

The style sheet referenced by the template appears in Listing 18.39.

Listing 18.39

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
 <xsl:template match="/">
 <HTML>
 <BODY>
 <TABLE border="1">
 <TR>
 <TD><I>Customer ID</I></TD>
 <TD><I>Company Name</I></TD>
 </TR>
 <xsl:for-each select="CustomerList/Customers">
 <TR>
 <TD>

Henderson_book.fm Page 728 Thursday, September 25, 2003 5:23 AM

Template Queries 729

 <xsl:value-of select="@CustomerId"/>
 </TD>
 <TD>
 <xsl:value-of select="@CompanyName"/>
 </TD>
 </TR>
 </xsl:for-each>
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

Listing 18.40 shows a URL that uses the template and the style sheet
shown in the previous two listings, along with the results it produces.

Listing 18.40

http://localhost/Northwind/Templates/CustomerList4.XML?
 contenttype=text/html

(Results abridged)

Customer ID Company Name

ALFKI Alfreds Futterkiste
ANATR Ana Trujillo Emparedados y helados
ANTON Antonio Moreno TaquerÃa
AROUT Around the Horn
VICTE Victuailles en stock
VINET Vins et alcools Chevalier
WARTH Wartian Herkku
WELLI Wellington Importadora
WHITC White Clover Markets
WILMK Wilman Kala
WOLZA Wolski Zajazd

Henderson_book.fm Page 729 Thursday, September 25, 2003 5:23 AM

730 Chapter 18 SQLXML

Note that, once again, we specify the contenttype parameter in order to
force the output to be treated as HTML. This is necessary because XML-
aware browsers such as Internet Explorer automatically treat the output re-
turned by XML templates as text/xml. Since the HTML we’re returning is
also well-formed XML, the browser doesn’t know to render it as HTML un-
less we tell it to. That’s what the contenttype specification is for—it causes
the browser to render the output of the template query as it would any other
HTML document.

TIP: While developing XML templates and similar documents that you then
test in a Web browser, you may run into problems with the browser caching old
versions of documents, even when you click the Refresh button or hit the Re-
fresh key (F5). In Internet Explorer, you can press Ctrl+F5 to cause a document
to be completely reloaded, even if the browser doesn’t think it needs to be.
Usually, this resolves problems with an old version persisting in memory after
you’ve changed the one on disk.

You can also disable the caching of templates for a given virtual directory
by selecting the Disable caching of templates option on the Advanced page of
the Properties dialog for the virtual directory. I almost always disable all cach-
ing while developing templates and other XML documents.

Applying Style Sheets on the Client

If the client is XML-enabled, you can also apply style sheets to template que-
ries on the client side. This offloads a bit of the work of the server but requires
a separate roundtrip to download the style sheet to the client. If the client is
not XML-enabled, the style sheet will be ignored, making this approach more
suitable to situations where you know for certain whether your clients are
XML-enabled, such as with private intranet or corporate applications.

The template in Listing 18.41 specifies a client-side style sheet translation.

Listing 18.41

<?xml version='1.0' ?>
<?xml-stylesheet type='text/xsl' href='CustomerList3.xsl'?>
<CustomerList xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
 <sql:query>
 SELECT CustomerId, CompanyName
 FROM Customers
 FOR XML AUTO
 </sql:query>
</CustomerList>

Henderson_book.fm Page 730 Thursday, September 25, 2003 5:23 AM

Template Queries 731

Note the xml-stylesheet specification at the top of the document
(bolded). This tells the client-side XML processor to download the style
sheet specified in the href attribute and apply it to the XML document ren-
dered by the template. Listing 18.42 shows the URL and results.

Listing 18.42

http://localhost/Northwind/Templates/CustomerList5.XML?
 contenttype=text/html

(Results abridged)

Client-Side Templates

As I mentioned earlier, it’s far more popular (and safer) to store templates
on your Web server and route users to them via virtual names. That said,
there are times when allowing the user the flexibility to specify templates on
the client side is very useful. Specifying client-side templates in HTML or
in an application alleviates the necessity to set up in advance the templates
or the virtual names that reference them. While this is certainly easier from
an administration standpoint, it’s potentially unsafe on the public Internet
because it allows clients to specify the code they run against your SQL
Server. Use of this technique should probably be limited to private intranets
and corporate networks.

Customer ID Company Name

ALFKI Alfreds Futterkiste
ANATR Ana Trujillo Emparedados y helados
ANTON Antonio Moreno TaquerÃa
AROUT Around the Horn
VICTE Victuailles en stock
VINET Vins et alcools Chevalier
WARTH Wartian Herkku
WELLI Wellington Importadora
WHITC White Clover Markets
WILMK Wilman Kala
WOLZA Wolski Zajazd

Henderson_book.fm Page 731 Thursday, September 25, 2003 5:23 AM

732 Chapter 18 SQLXML

Listing 18.43 presents a Web page that embeds a client-side template.

Listing 18.43

<HTML>
 <HEAD>
 <TITLE>Customer List</TITLE>
 </HEAD>
 <BODY>
 <FORM action='http://localhost/Northwind' method='POST'>
 Customer ID Number
 <INPUT type=text name=CustomerId value='AAAAA'>
 <INPUT type=hidden name=xsl value=Templates/CustomerList2.xsl>
 <INPUT type=hidden name=template value='
 <CustomerList xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:header>
 <sql:param name="CustomerId">%</sql:param>
 </sql:header>
 <sql:query>
 SELECT CompanyName, ContactName
 FROM Customers
 WHERE CustomerId LIKE @CustomerId
 FOR XML AUTO
 </sql:query>
 </CustomerList>
 '>
 <P><input type='submit'>
 </FORM>
 </BODY>
</HTML>

The client-side template (bolded) is embedded as a hidden field in the
Web page. If you open this page in a Web browser, you should see an entry
box for a Customer ID and a submit button. Entering a customer ID or
mask and clicking Submit Query will post the template to the Web server.
SQLISAPI will then extract the query contained in the template and run it
against SQL Server’s Northwind database (because of the template’s virtual
directory reference). The CustomerList2.xsl style sheet will then be applied
to translate the XML document that SQL Server returns into HTML, and
the result will be returned to the client. Listing 18.44 shows an example.

Henderson_book.fm Page 732 Thursday, September 25, 2003 5:23 AM

Mapping Schemas 733

Listing 18.44

Customer ID Number

(Results)

As with server-side templates, client-side templates are sent to SQL
Server using an RPC.

Mapping Schemas

XML schemas are XML documents that define the type of data that other
XML documents may contain. They are a replacement for the old DTD
technology originally employed for that purpose and are easier to use and
more flexible because they consist of XML themselves.

By their very nature, schemas also define document exchange formats.
Since they define what a document may and may not contain, companies
wishing to exchange XML data need to agree on a common schema defini-
tion in order to do so. XML schemas allow companies with disparate busi-
ness needs and cultures to exchange data seamlessly.

A mapping schema is a special type of schema that maps data between
an XML document and a relational table. A mapping schema can be used to
create an XML view of a SQL Server table. In that sense, a mapping
schema is similar to a SQL Server view object that returns an XML-centric
view of the underlying SQL Server table or view object.

Company Name Contact Name

Alfreds Futterkiste Maria Anders

Ana Trujillo Emparedados y helados Ana Trujillo

Antonio Moreno TaquerÃa Antonio Moreno

Around the Horn Thomas Hardy

A%

Submit Query

Henderson_book.fm Page 733 Thursday, September 25, 2003 5:23 AM

734 Chapter 18 SQLXML

Work on the final XML Schema standard was still under way when SQL
Server 2000 shipped. At that time, Microsoft, along with several other compa-
nies, proposed that a subset of the W3C XML-Data syntax be used to define
schemas for document interchange. SQL Server’s original XML schema sup-
port was based on XML-Data Reduced (XDR), an XML-Data subset that can
be used to define schemas. Since then, the XML Schema standard has been
finalized, and SQLXML has been enhanced to support it. XML Schema is
now the preferred method of building schemas for use by SQLXML. It is
more flexible and has more features than the original XDR schema support in
SQLXML. I’ll cover SQLXML’s XDR and XML Schema support in the next
two sections.

XDR Mapping Schemas

Let’s begin our coverage of XDR mapping schemas with an example (List-
ing 18.45).

Listing 18.45

<?xml version="1.0"?>
<Schema name="NorthwindProducts"
 xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">

 <ElementType name="Description" dt:type="string"/>
 <ElementType name="Price" dt:type="fixed.19.4"/>

 <ElementType name="Product" model="closed">
 <AttributeType name="ProductCode" dt:type="string"/>
 <attribute type="ProductCode" required="yes"/>
 <element type="Description" minOccurs="1" maxOccurs="1"/>
 <element type="Price" minOccurs="1" maxOccurs="1"/>
 </ElementType>

 <ElementType name="Category" model="closed">
 <AttributeType name="CategoryID" dt:type="string"/>
 <AttributeType name="CategoryName" dt:type="string"/>
 <attribute type="CategoryID" required="yes"/>

Henderson_book.fm Page 734 Thursday, September 25, 2003 5:23 AM

Mapping Schemas 735

 <attribute type="CategoryName" required="yes"/>
 <element type="Product" minOccurs="1" maxOccurs="*"/>
 </ElementType>

 <ElementType name="Catalog" model="closed">
 <element type="Category" minOccurs="1" maxOccurs="1"/>
 </ElementType>

</Schema>

This schema defines how a product catalog might look. (We’re using the
sample tables and data from the Northwind database.) It uses the datatypes
namespace (bolded) to define the valid data types for elements and attributes
in the document. Every place you see dt: in the listing is a reference to the
datatypes namespace. The use of the closed model guarantees that only ele-
ments that exist in the schema can be used in a document based on it.

Listing 18.46 shows an XML document that uses ProductCat.xdr.

Listing 18.46

<?xml version="1.0"?>
<Catalog xmlns=
 "x-schema:http://localhost/ProductsCat.xdr">
 <Category CategoryID="1" CategoryName="Beverages">
 <Product ProductCode="1">
 <Description>Chai</Description>
 <Price>18</Price>
 </Product>
 <Product ProductCode="2">
 <Description>Chang</Description>
 <Price>19</Price>
 </Product>
 </Category>
 <Category CategoryID="2" CategoryName="Condiments">
 <Product ProductCode="3">
 <Description>Aniseed Syrup</Description>
 <Price>10</Price>
 </Product>
 </Category>
</Catalog>

Henderson_book.fm Page 735 Thursday, September 25, 2003 5:23 AM

736 Chapter 18 SQLXML

If you copy both of these files to the root folder of your Web server and
type the following URL:

http://localhost/ProductsCat.xml

into your browser, you should see this output:

<?xml version="1.0" ?>
<Catalog xmlns="x-schema:http://localhost/ProductsCat.xdr">
<Category CategoryID="1" CategoryName="Beverages">
 <Product ProductCode="1">
 <Description>Chai</Description>
 <Price>18</Price>
 </Product>
 <Product ProductCode="2">
 <Description>Chang</Description>
 <Price>19</Price>
 </Product>
</Category>
<Category CategoryID="2" CategoryName="Condiments">
 <Product ProductCode="3">
 <Description>Aniseed Syrup</Description>
 <Price>10</Price>
 </Product>
</Category>
</Catalog>

You’ve already seen that XML data can be extracted and formatted in a
variety of ways. One of the challenges in exchanging data using XML is this
flexibility. Mapping schemas help overcome this challenge. They allow us to
return data from a database in a particular format. They allow us to map col-
umns and tables to attributes and elements.

The easiest way to use an XDR schema to map data returned by SQL
Server into XML entities is to assume the default mapping returned by
SQL Server. That is, every table becomes an element, and every column be-
comes an attribute. Listing 18.47 presents an XDR schema that does that.

Listing 18.47

<?xml version="1.0"?>
<Schema name="customers"
 xmlns="urn:schemas-microsoft-com:xml-data">

Henderson_book.fm Page 736 Thursday, September 25, 2003 5:23 AM

Mapping Schemas 737

 <ElementType name="Customers">
 <AttributeType name="CustomerId"/>
 <AttributeType name="CompanyName"/>
 </ElementType>
</Schema>

Here, we retrieve only two columns, each of them from the Customers
table. If you store this XDR schema under a virtual directory on your Web
server and retrieve it via a URL, you’ll see a simple XML document with the
data from the Northwind Customers table in an attribute-centric mapping.

You use XML-Data’s ElementType to map a column in a table to an ele-
ment in the resulting XML document, as demonstrated in Listing 18.48.

Listing 18.48

<?xml version="1.0"?>
<Schema name="customers"
 xmlns="urn:schemas-microsoft-com:xml-data">
 <ElementType name="Customers">
 <ElementType name="CustomerId" content="textOnly"/>
 <ElementType name="CompanyName" content="textOnly"/>
 </ElementType>
</Schema>

Note the use of the content="textOnly" attribute with each element. In
conjunction with the ElementType element, this maps a column to an ele-
ment in the resulting XML document. Note that the elements corresponding
to each column are actually empty—they contain attributes only, no data.

Annotated XDR Schemas

An annotated schema is a mapping schema with special annotations (from
the XML-SQL namespace) that link elements and attributes with tables and
columns. The code in Listing 18.49 uses our familiar Customer list example.

Listing 18.49

<?xml version="1.0"?>
<Schema name="customers"

Henderson_book.fm Page 737 Thursday, September 25, 2003 5:23 AM

738 Chapter 18 SQLXML

 xmlns="urn:schemas-microsoft-com:xml-data">
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Customer" sql:relation="Customers">
 <AttributeType name="CustomerNumber" sql:field="CustomerId"/>
 <AttributeType name="Name" sql:field="CompanyName"/>
 </ElementType>
</Schema>

First, note the reference to the XML-SQL namespace at the top of the
schema. Since we’ll be referencing it later in the schema, we begin with a
reference to XML-SQL so that we can use the sql: namespace shorthand for
it later. Next, notice the sql:relation attribute of the first ElementType ele-
ment. It establishes that the Customer element in the resulting document
relates to the Customers table in the database referenced by the virtual di-
rectory. This allows you to call the element whatever you want. Last, notice
the sql:field references. They establish, for example, that the Customer-
Number element refers to the CustomerId column in the referenced table.
Things get more complicated when multiple tables are involved, but you get
the picture—an annotated schema allows you to establish granular map-
pings between document entities and database entities.

XSD Mapping Schemas

Similarly to XDR, you can also construct XML views using annotated XML
Schema Definition (XSD) language. This is, in fact, the preferable way to
build annotated schemas because XDR was an interim technology that pre-
ceded the finalization of the XML Schema standard, as I mentioned earlier.
In this section, we’ll talk about the various ways to construct annotated XSD
mapping schemas and walk through a few examples.

Just as we did with XDR, let’s begin our discussion of XSD mapping sche-
mas with an example (Listing 18.50).

Listing 18.50

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Customers" >
 <xsd:complexType>
 <xsd:attribute name="CustomerID" type="xsd:string" />
 <xsd:attribute name="CompanyName" type="xsd:string" />

Henderson_book.fm Page 738 Thursday, September 25, 2003 5:23 AM

Mapping Schemas 739

 <xsd:attribute name="ContactName" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Note the reference to the XSD namespace, http://www.w3.org/2001/
XMLSchema. We alias this to xsd (the alias name is arbitrary—it serves
merely as shorthand to distinguish XSD elements and attributes from those
of other namespaces), then prefix XSD elements/attributes in the schema
with xsd:.

SQLXML’s mapping schema namespace is defined at urn:schemas-mi-
crosoft-com:mapping-schema. We use this namespace to map elements and
attributes in the schema to tables and columns in a database. We’ve defined
this namespace with an alias of sql, so we’ll use a prefix of sql: when refer-
ring to elements and attributes in SQLXML’s mapping schema namespace.

Default Mapping

The schema above uses default mapping to associate complex XSD types
with tables/views of the same name and attributes with same-named col-
umns. Note the absence of any reference to the sql namespace (once it’s de-
fined). We’re not using it because we’re not explicitly mapping any elements
or attributes to tables or columns. You can construct a template like the fol-
lowing to query this XML view using an XPath expression:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="Customers.xsd">
 /Customers
 </sql:xpath-query>
</ROOT>

Follow these steps to query the XML view in Listing 18.50 by using the
above template from your browser.

1. Save the XML view as Customers.XSD in the templates folder you
created under the Northwind virtual directory earlier.

2. Save the template above as CustomersT.XML in the same folder.
3. Go to the following URL in your browser:

http://localhost/Northwind/templates/CustomersT.XML

Henderson_book.fm Page 739 Thursday, September 25, 2003 5:23 AM

740 Chapter 18 SQLXML

Explicit Mapping

A mapping schema can also specify explicit relationships between XSD ele-
ments and attributes and SQL Server tables and columns. This is done by
using the SQLXML mapped schema namespace I mentioned above. Spe-
cifically, we’ll make use of sql:field and sql:relation to establish these rela-
tionships, as shown in Listing 18.51.

Listing 18.51

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Cust" sql:relation="Customers" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CustNo"
 sql:field="CustomerId"
 type="xsd:integer" />
 <xsd:element name="Contact"
 sql:field="ContactName"
 type="xsd:string" />
 <xsd:element name="Company"
 sql:field="CompanyName"
 type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Note the use of sql:relation to establish the mapping between the Cust
document element and the Customers database table and the use of the
sql:field notation to establish mappings between document elements and
table columns. Because each table column is annotated as an element, each
column in the Customers table will become a separate element in the re-
sulting XML document. You can also map table columns to attributes, as
demonstrated in Listing 18.52.

Listing 18.52

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Cust" sql:relation="Customers" >

Henderson_book.fm Page 740 Thursday, September 25, 2003 5:23 AM

Mapping Schemas 741

 <xsd:complexType>
 <xsd:attribute name="CustNo" sql:field="CustomerId"
 type="xsd:integer" />
 <xsd:attribute name="Contact" sql:field="ContactName"
 type="xsd:string" />
 <xsd:attribute name="Company" sql:field="CompanyName"
 type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Here, we leave out the complexType element (because we don’t need
it—we’re not defining nested elements) and simply map each table column
to an attribute in the XSD using sql:field.

Relationships

You can use the sql:relationship annotation to establish a relationship be-
tween two elements. You define an empty sql:relationship element and in-
clude parent, parent-key, child, and child-key attributes to define the
relationship between the two elements. Relationships defined this way can
be named or unnamed. For elements mapped to tables and columns in a
SQL Server database, this is similar to joining the tables; the parent/child
and parent-key/child-key matchups supply the join criteria. Listing 18.53
shows an example (from EmpOrders.XSD in the CH18 subfolder on the
CD accompanying this book).

Listing 18.53

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Employee" sql:relation="Employees"
 type="EmployeeType" />
 <xsd:complexType name="EmployeeType" >
 <xsd:sequence>
 <xsd:element name="Order"
 sql:relation="Orders">
 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship
 parent="Employees"

Henderson_book.fm Page 741 Thursday, September 25, 2003 5:23 AM

742 Chapter 18 SQLXML

 parent-key="EmployeeID"
 child="Orders"
 child-key="EmployeeID" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 <xsd:attribute name="LastName" type="xsd:string" />
 </xsd:complexType>
</xsd:schema>

In this schema, we establish a relationship between the Employee
and Order elements using the EmployeeID attribute. Again, this is accom-
plished via the notational attributes provided by Microsoft’s mapping-schema
namespace.

sql:inverse

You can use the sql:inverse annotation to invert a relationship established
with sql:relationship. Why would you want to do that? SQLXML’s update-
gram logic interprets the schema in order to determine the tables being up-
dated by an updategram. (We’ll cover updategrams in the next section.) The
parent-child relationships established with sql:relationship determine the
order in which row deletions and inserts occur. If you specify the sql:rela-
tionship notation such that the parent-child relationship between the tables
is the inverse of the underlying primary key/foreign key relationship, the at-
tempted insert or delete operation will fail due to key violations. You can set
the sql:inverse attribute to 1 (or true) in the sql:relationship element in or-
der to flip the relationship so that this doesn’t happen.

The usefulness of the sql:inverse notation is limited to updategrams.
There’s no point in inversing a regular mapping schema. Listing 18.54 pre-
sents an example of a mapping schema that puts the sql:inverse annotation
attribute to good use. (You can find this in OrderDetails.XSD in the CH18
folder on the CD accompanying this book.)

Henderson_book.fm Page 742 Thursday, September 25, 2003 5:23 AM

Mapping Schemas 743

Listing 18.54

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="OrderDetails" sql:relation="[Order Details]"
 type="OrderDetailsType" />
 <xsd:complexType name="OrderDetailsType" >
 <xsd:sequence>
 <xsd:element name="Order"
 sql:relation="Orders">
 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship
 parent="[Order Details]"
 parent-key="OrderID"
 child="Orders"
 child-key="OrderID"
 inverse="true" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="ProductID" type="xsd:integer" />
 <xsd:attribute name="Qty" sql:field="Quantity" type="xsd:integer" />
 </xsd:complexType>
</xsd:schema>

Note the use of square brackets around the Order Details table name.
These are required in the mapping schema for SQL Server table names that
contain spaces.

sql:mapped

You can use the sql:mapped annotation to control whether an attribute or el-
ement is mapped to a database object. When the default mapping is used,

Henderson_book.fm Page 743 Thursday, September 25, 2003 5:23 AM

744 Chapter 18 SQLXML

every element and attribute in a mapping schema maps to a database object.
If you have a schema in which you have elements or attributes that you do
not want to map to database objects, you can set the sql:mapped annotation
to 0 (or false) in an XSD element or attribute specification. The sql:mapped
annotation is especially useful in situations where the schema can’t be
changed or is being used to validate other XML data and contains elements
or attributes that do not have analogues in your database. Listing 18.55 uses
sql:mapped to include an element in a mapping schema that is not mapped
to a database object.

Listing 18.55

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Employee" sql:relation="Employees"
 type="EmployeeType" />
 <xsd:complexType name="EmployeeType" >
 <xsd:sequence>
 <xsd:element name="Order"
 sql:relation="Orders">
 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship
 parent="Employees"
 parent-key="EmployeeID"
 child="Orders"
 child-key="EmployeeID" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 <xsd:attribute name="LastName" type="xsd:string" />
 <xsd:attribute name="Level" type="xsd:integer"
 sql:mapped="0" />
 </xsd:complexType>
</xsd:schema>

Henderson_book.fm Page 744 Thursday, September 25, 2003 5:23 AM

Mapping Schemas 745

Note the inclusion of the Level attribute in the Employee element. Be-
cause it contains a sql:mapped annotation that is set to false, it is not mapped
to a database object.

sql:limit-field and sql:limit-value

Similarly to the way you can filter XML views using XPath expressions, you
can also filter them based on values returned from the database using the
sql:limit-field and sql:limit-value annotations. The sql:limit-field annotation
specifies the filter column from the database; sql:limit-value specifies the
value to filter it by. Note that sql:limit-value is actually optional—if it isn’t
supplied, NULL is assumed. Listing 18.56 shows an example of a mapping
schema that filters based on the value of a column in the database.

Listing 18.56

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Employee" sql:relation="Employees"
 type="EmployeeType" />
 <xsd:complexType name="EmployeeType" >
 <xsd:sequence>
 <xsd:element name="Order"
 sql:relation="Orders">
 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship
 parent="Employees"
 parent-key="EmployeeID"
 child="Orders"
 child-key="EmployeeID" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="EmployeeID"
 type="xsd:integer"
 sql:limit-field="EmployeeID"

Henderson_book.fm Page 745 Thursday, September 25, 2003 5:23 AM

746 Chapter 18 SQLXML

 sql:limit-value="3"/>
 <xsd:attribute name="LastName" type="xsd:string" />
 </xsd:complexType>

</xsd:schema>

This schema filters the XML document based on the EmployeeID col-
umn in the database. Only those rows with an EmployeeID of 3 are re-
turned in the document. If you submit a URL query against this mapping
schema using the following template:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:xpath-query mapping-schema="EmpOrders_Filtered.XSD">
 /Employee
 </sql:xpath-query>
</ROOT>

you’ll see a document that looks something like this in your browser (results
abridged):

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <Employee EmployeeID="3" LastName="Leverling">
 <Order EmployeeID="3" OrderID="10251" />
 <Order EmployeeID="3" OrderID="10253" />
 <Order EmployeeID="3" OrderID="10256" />
 <Order EmployeeID="3" OrderID="10266" />
 <Order EmployeeID="3" OrderID="10273" />
 <Order EmployeeID="3" OrderID="10283" />
 <Order EmployeeID="3" OrderID="10309" />
 <Order EmployeeID="3" OrderID="10321" />
 <Order EmployeeID="3" OrderID="10330" />
 <Order EmployeeID="3" OrderID="10332" />
 <Order EmployeeID="3" OrderID="10346" />
 <Order EmployeeID="3" OrderID="10352" />
...
</ROOT>

sql:key-fields

You use the sql:key-fields annotation to identify the key columns in a table
to which an XML view is mapped. The sql:key-fields annotation is usually
required in mapping schemas in order to ensure that proper nesting occurs

Henderson_book.fm Page 746 Thursday, September 25, 2003 5:23 AM

Mapping Schemas 747

in the resulting XML document. This is because the key columns of the un-
derlying table are used to nest the document. This makes the XML that’s
produced sensitive to the order of the underlying data. If the key columns
of the underlying data can’t be determined, the generated XML might be
formed incorrectly. You should always specify either sql:key-fields or ele-
ments that map directly to tables in the database. Listing 18.57 offers an ex-
ample of a mapping schema that uses sql:key-fields (from EmpOrders_
KeyFields.XSD in the CH18 folder on the CD accompanying this book).

Listing 18.57

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Employee"
 sql:relation="Employees"
 type="EmployeeType"
 sql:key-fields="EmployeeID"/>
 <xsd:complexType name="EmployeeType" >
 <xsd:sequence>
 <xsd:element name="Order"
 sql:relation="Orders">
 <xsd:annotation>
 <xsd:appinfo>
 <sql:relationship
 parent="Employees"
 parent-key="EmployeeID"
 child="Orders"
 child-key="EmployeeID" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="OrderID" type="xsd:integer" />
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="LastName" type="xsd:string" />
 <xsd:attribute name="FirstName" type="xsd:string" />
 </xsd:complexType>
</xsd:schema>

Henderson_book.fm Page 747 Thursday, September 25, 2003 5:23 AM

748 Chapter 18 SQLXML

Note that we haven’t mapped the EmployeeID column in the Employ-
ees table. Without this column, we don’t have a column with which we can
join the Orders table. Including it in the sql:key-fields annotation allows us
to leave it unmapped but still establish the relationship between the two
tables.

Updategrams

Thus far, we’ve looked at how data can be retrieved from SQL Server in
XML format, but we haven’t talked about how to update SQL Server data
using XML. Updategrams provide an XML-based method of updating data
in a SQL Server database. They are basically templates with special at-
tributes and elements that allow you to specify the data you want to update
and how you want to update it. An updategram contains a before image and
an after image of the data you want to change. You submit updategrams to
SQL Server in much the same way as you submit templates. All the execu-
tion mechanisms available with templates work equally well with update-
grams. You can POST updategrams via HTTP, save updategrams to files and
execute them via URLs, and execute updategrams directly via ADO and
OLE DB.

How They Work

Updategrams are based on the xml-updategram namespace. You reference
this namespace via the xmlns:updg qualifier. Each updategram contains at
least one sync element. This sync element contains the data changes you
wish to make in the form of before and after elements. The before element
contains the before image of the data you wish to change. Normally, it will
also contain a primary key or candidate key reference so that SQL Server
will be able to locate the row you wish to change. Note that only one row
can be selected for update by the before element. If the elements and at-
tributes included in the before element identify more than one row, you’ll
receive an error message.

For row deletions, an updategram will have a before image but no after
image. For insertions, it will have an after image but no before image. And,
of course, for updates, an updategram will have both a before image and an
after image. Listing 18.58 provides an example.

Henderson_book.fm Page 748 Thursday, September 25, 2003 5:23 AM

Updategrams 749

Listing 18.58

<?xml version="1.0"?>
<employeeupdate xmlns:updg=
 "urn:schemas-microsoft-com:xml-updategram">
 <updg:sync>
 <updg:before>
 <Employees EmployeeID="4"/>
 </updg:before>
 <updg:after>
 <Employees City="Scotts Valley" Region="CA"/>
 </updg:after>
 </updg:sync>
</employeeupdate>

In this example, we change the City and Region columns for Employee 4
in the Northwind Employees table. The EmployeeID attribute in the be-
fore element identifies the row to change, and the City and Region at-
tributes in the after element identify which columns to change and what
values to assign them.

Each batch of updates within a sync element is considered a transac-
tion. Either all the updates in the sync element succeed or none of them do.
You can include multiple sync elements to break updates into multiple
transactions.

Mapping Data

Of course, in sending data to the server for updates, deletions, and inser-
tions via XML, we need a means of linking values in the XML document to
columns in the target database table. SQL Server sports two facilities for
doing this: default mapping and mapping schemas.

Default Mapping

Naturally, the easiest way to map data in an updategram to columns in the
target table is to use the default mapping (also known as intrinsic mapping).
With default mapping, a before or after element’s top-level tag is assumed
to refer to the target database table, and each subelement or attribute it
contains refers to a column of the same name in the table.

Henderson_book.fm Page 749 Thursday, September 25, 2003 5:23 AM

750 Chapter 18 SQLXML

Here’s an example that shows how to map the OrderID column in the
Orders table:

<Orders OrderID="10248"/>

This example maps XML attributes to table columns. You could also
map subelements to table columns, like this:

<Orders>
 <OrderID>10248</OrderID>
</Orders>

You need not select either attribute-centric or element-centric map-
ping. You can freely mix them within a given before or after element, as
shown below:

<Orders OrderID="10248">
 <ShipCity>Reims</ShipCity>
</Orders>

Use the four-digit hexadecimal UCS-2 code for characters in table
names that are illegal in XML elements (e.g., spaces). For example, to ref-
erence the Northwind Order Details table, do this:

<Order_x0020_Details OrderID="10248"/>

Mapping Schemas

You can also use XDR and XSD mapping schemas to map data in an up-
dategram to tables and columns in a database. You use a sync’s updg:map-
ping-schema attribute to specify the mapping schema for an updategram.
Listing 18.59 shows an example that specifies an updategram for the Orders
table.

Listing 18.59

<?xml version="1.0"?>
<orderupdate xmlns:updg=
 "urn:schemas-microsoft-com:xml-updategram">
 <updg:sync updg:mapping-schema="OrderSchema.xml">
 <updg:before>

Henderson_book.fm Page 750 Thursday, September 25, 2003 5:23 AM

Updategrams 751

 <Order OID="10248"/>
 </updg:before>
 <updg:after>
 <Order City="Reims"/>
 </updg:after>
 </updg:sync>
</orderupdate>

Listing 18.60 shows its XDR mapping schema.

Listing 18.60

<?xml version="1.0"?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <ElementType name="Order" sql:relation="Orders">
 <AttributeType name="OID"/>
 <AttributeType name="City"/>
 <attribute type="OID" sql:field="OrderID"/>
 <attribute type="City" sql:field="ShipCity"/>
 </ElementType>
</Schema>

Listing 18.61 shows its XSD mapping schema.

Listing 18.61

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Order" sql:relation="Orders" >
 <xsd:complexType>
 <xsd:attribute name="OID" sql:field="OrderId"
 type="xsd:integer" />
 <xsd:attribute name="City" sql:field="ShipCity"
 type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Henderson_book.fm Page 751 Thursday, September 25, 2003 5:23 AM

752 Chapter 18 SQLXML

As you can see, a mapping schema maps the layout of the XML docu-
ment to the Northwind Orders table. See the Mapping Schemas section ear-
lier in the chapter for more information on building XML mapping schemas.

NULLs

It’s common to represent missing or inapplicable data as NULL in a data-
base. To represent or retrieve NULL data in an updategram, you use the
sync element’s nullvalue attribute to specify a placeholder for NULL. This
placeholder is then used everywhere in the updategram that you need to
specify a NULL value, as demonstrated in Listing 18.62.

Listing 18.62

<?xml version="1.0"?>
<employeeupdate xmlns:updg=
 "urn:schemas-microsoft-com:xml-updategram">
 <updg:sync updg:nullvalue="NONE">
 <updg:before>
 <Orders OrderID="10248"/>
 </updg:before>
 <updg:after>
 <Orders ShipCity="Reims" ShipRegion="NONE"
 ShipName="NONE"/>
 </updg:after>
 </updg:sync>
</employeeupdate>

As you can see, we define a placeholder for NULL named NONE. We
then use this placeholder to assign a NULL value to the ShipRegion and Ship-
Name columns.

Parameters

Curiously, parameters work a little differently with updategrams than with
templates. Rather than using at (@) symbols to denote updategram parame-
ters, you use dollar ($) symbols, as shown in Listing 18.63.

Henderson_book.fm Page 752 Thursday, September 25, 2003 5:23 AM

Updategrams 753

Listing 18.63

<?xml version="1.0"?>
<orderupdate xmlns:updg=
 "urn:schemas-microsoft-com:xml-updategram">
 <updg:header>
 <updg:param name="OrderID"/>
 <updg:param name="ShipCity"/>
 </updg:header>
 <updg:sync>
 <updg:before>
 <Orders OrderID="$OrderID"/>
 </updg:before>
 <updg:after>
 <Orders ShipCity="$ShipCity"/>
 </updg:after>
 </updg:sync>
</orderupdate>

This nuance has interesting implications for passing currency values as
parameters. To pass a currency parameter value to a table column (e.g., the
Freight column in the Orders table), you must map the data using a map-
ping schema.

NULL Parameters

In order to pass a parameter with a NULL value to an updategram, include
the nullvalue placeholder attribute in the updategram’s header element.
You can then pass this placeholder value into the updategram to signify a
NULL parameter value. This is similar to the way you specify a NULL
value for a column in an updategram, the difference being that you specify
nullvalue within the sync element for column values but within the header
element for parameters. Listing 18.64 shows an example.

Listing 18.64

<?xml version="1.0"?>
<orderupdate xmlns:updg=
 "urn:schemas-microsoft-com:xml-updategram">
 <updg:header nullvalue="NONE">
 <updg:param name="OrderID"/>

Henderson_book.fm Page 753 Thursday, September 25, 2003 5:23 AM

754 Chapter 18 SQLXML

<updg:param name="ShipCity"/>
</updg:header>
 <updg:sync>
 <updg:before>
 <Orders OrderID="$OrderID"/>
 </updg:before>
 <updg:after>
 <Orders ShipCity="$ShipCity"/>
 </updg:after>
 </updg:sync>
</orderupdate>

This updategram accepts two parameters. Passing a value of NONE will
cause the ShipCity column to be set to NULL for the specified order.

Note that we don’t include the xml-updategram (updg:) qualifier when
specifying the nullvalue placeholder for parameters in the updategram’s
header.

Multiple Rows

I mentioned earlier that each before element can identify at most one row.
This means that to update multiple rows, you must include an element for
each row you wish to change.

The id Attribute

When you specify multiple subelements within your before and after ele-
ments, SQL Server requires that you provide a means of matching each be-
fore element with its corresponding after element. One way to do this is
through the id attribute. The id attribute allows you to specify a unique
string value that you can use to match a before element with an after ele-
ment. Listing 18.65 gives an example.

Listing 18.65

<?xml version="1.0"?>
<orderupdate xmlns:updg=
 "urn:schemas-microsoft-com:xml-updategram">
 <updg:sync>
 <updg:before>

Henderson_book.fm Page 754 Thursday, September 25, 2003 5:23 AM

Updategrams 755

 <Orders updg:id="ID1" OrderID="10248"/>
 <Orders updg:id="ID2" OrderID="10249"/>
 </updg:before>
 <updg:after>
 <Orders updg:id="ID2" ShipCity="Munster"/>
 <Orders updg:id="ID1" ShipCity="Reims"/>
 </updg:after>
 </updg:sync>
</orderupdate>

Here, we use the updg:id attribute to match up subelements in the be-
fore and after elements. Even though these subelements are specified out
of sequence, SQL Server is able to apply the updates to the correct rows.

Multiple before and after Elements

Another way to do this is to specify multiple before and after elements rather
than multiple subelements. For each row you want to change, you specify a
separate before/after element pair, as demonstrated in Listing 18.66.

Listing 18.66

<?xml version="1.0"?>
<orderupdate xmlns:updg=
 "urn:schemas-microsoft-com:xml-updategram">
 <updg:sync>
 <updg:before>
 <Orders OrderID="10248"/>
 </updg:before>
 <updg:after>
 <Orders ShipCity="Reims"/>
 </updg:after>
 <updg:before>
 <Orders OrderID="10249"/>
 </updg:before>
 <updg:after>
 <Orders ShipCity="Munster"/>
 </updg:after>
 </updg:sync>
</orderupdate>

Henderson_book.fm Page 755 Thursday, September 25, 2003 5:23 AM

756 Chapter 18 SQLXML

As you can see, this updategram updates two rows. It includes a sepa-
rate before/after element pair for each update.

Results

The result returned to a client application that executes an updategram is
normally an XML document containing the empty root element specified in
the updategram. For example, we would expect to see this result returned
by the orderupdate updategram:

<?xml version="1.0"?>
<orderupdate xmlns:updg=
 "urn:schemas-microsoft-com:xml-updategram">
</orderupdate>

Any errors that occur during updategram execution are returned as
<?MSSQLError> elements within the updategram’s root element.

Identity Column Values

In real applications, you often need to be able to retrieve an identity value
that’s generated by SQL Server for one table and insert it into another. This
is especially true when you need to insert data into a table whose primary
key is an identity column and a table that references this primary key via a
foreign key constraint. Take the example of inserting orders in the North-
wind Orders and Order Details tables. As its name suggests, Order Details
stores detail information for the orders in the Orders table. Part of Order
Details’ primary key is the Orders table’s OrderID column. When we insert
a new row into the Orders table, we need to be able to retrieve that value
and insert it into the Order Details table.

From Transact-SQL, we’d usually handle this situation with an IN-
STEAD OF insert trigger or a stored procedure. To handle it with an update-
gram, we use the at-identity attribute. Similarly to the id attribute, at-identity
serves as a placeholder—everywhere we use its value in the updategram,
SQL Server supplies the identity value for the corresponding table. (Each ta-
ble can have just one identity column.) Listing 18.67 shows an example.

Listing 18.67

<?xml version="1.0"?>
<orderinsert xmlns:updg=

Henderson_book.fm Page 756 Thursday, September 25, 2003 5:23 AM

Updategrams 757

 "urn:schemas-microsoft-com:xml-updategram">
 <updg:sync>
 <updg:before>
 </updg:before>
 <updg:after>
 <Orders updg:at-identity="ID" ShipCity="Reims"/>
 <Order_x0020_Details OrderID="ID" ProductID="11"
 UnitPrice="$16.00" Quantity="12"/>
 <Order_x0020_Details OrderID="ID" ProductID="42"
 UnitPrice="$9.80" Quantity="10"/>
 </updg:after>
 </updg:sync>
</orderinsert>

Here, we use the string “ID” to signify the identity column in the Or-
ders table. Once the string is assigned, we can use it in the insertions for the
Order Details table.

In addition to being able to use an identity column value elsewhere in
an updategram, it’s quite likely that you’ll want to be able to return it to the
client. To do this, use the after element’s returnid attribute and specify the
at-identity placeholder as its value, as shown in Listing 18.68.

Listing 18.68

<?xml version="1.0"?>
<orderinsert xmlns:updg=
 "urn:schemas-microsoft-com:xml-updategram">
 <updg:sync>
 <updg:before>
 </updg:before>
 <updg:after updg:returnid="ID">
 <Orders updg:at-identity="ID" ShipCity="Reims"/>
 <Order_x0020_Details OrderID="ID" ProductID="11"
 UnitPrice="$16.00" Quantity="12"/>
 <Order_x0020_Details OrderID="ID" ProductID="42"
 UnitPrice="$9.80" Quantity="10"/>
 </updg:after>
 </updg:sync>
</orderinsert>

Henderson_book.fm Page 757 Thursday, September 25, 2003 5:23 AM

758 Chapter 18 SQLXML

Executing this updategram will return an XML document that looks
like this:

<?xml version="1.0"?>
<orderinsert xmlns:updg=
 "urn:schemas-microsoft-com:xml-updategram">
 <returnid>
 <ID>10248</ID>
 </returnid>
</orderinsert>

Globally Unique Identifiers

It’s not unusual to see Globally Unique Identifiers (GUIDs) used as key val-
ues across a partitioned view or other distributed system. (These are stored in
columns of type uniqueidentifier.) Normally, you use the Transact-SQL NE-
WID() function to generate new uniqueidentifiers. The updategram equiva-
lent of NEWID() is the guid attribute. You can specify the guid attribute to
generate a GUID for use elsewhere in a sync element. As with id, nullvalue,
and the other attributes presented in this section, the guid attribute estab-
lishes a placeholder that you can then supply to other elements and attributes
in the updategram in order to use the generated GUID. Listing 18.69 pre-
sents an example.

Listing 18.69

<orderinsert>
 xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync>
 <updg:before>
 </updg:before>
 <updg:after>
 <Orders updg:guid="GUID">
 <OrderID>GUID</OrderID>
 <ShipCity>Reims</ShipCity>
 </Orders>
 <Order_x0020_Details OrderID="GUID" ProductID="11"
 UnitPrice="$16.00" Quantity="12"/>
 <Order_x0020_Details OrderID="GUID" ProductID="42"
 UnitPrice="$9.80" Quantity="10"/>
 </updg:after>
 </updg:sync>
</orderinsert>

Henderson_book.fm Page 758 Thursday, September 25, 2003 5:23 AM

XML Bulk Load 759

XML Bulk Load

As we saw in the earlier discussions of updategrams and OPENXML, in-
serting XML data into a SQL Server database is relatively easy. However,
both of these methods of loading data have one serious drawback: They’re
not suitable for loading large amounts of data. In the same way that using
the Transact-SQL INSERT statement is suboptimal for loading large num-
bers of rows, using updategrams and OPENXML to load large volumes of
XML data into SQL Server is slow and resource intensive.

SQLXML provides a facility intended specifically to address this prob-
lem. Called the XML Bulk Load component, it is a COM component you
can call from OLE Automation–capable languages and tools such as Visual
Basic, Delphi, and even Transact-SQL. It presents an object-oriented inter-
face to loading XML data in bulk in a manner similar to the Transact-SQL
BULK INSERT command.

Architecturally, XML Bulk Load is an in-process COM component
named SQLXMLBulkLoad that resides in a DLL named XBLKLDn.DLL.
When it bulk loads data to SQL Server, it does so via the bulk load interface
of SQL Server’s SQLOLEDB native OLE DB provider. If you have a Pro-
filer trace running while the bulk load is occurring, you’ll see an INSERT
BULK language event show up in the trace. INSERT BULK is indicative of
a special TDS packet type designed especially for bulk loading data. It’s nei-
ther a true language event nor an RPC event; instead, it is a distinct type of
data packet that bulk load facilities send to the server when they want to ini-
tiate a bulk copy operation.

Using the Component

The first step in using the XML Bulk Load component is to define a map-
ping schema that maps the XML data you’re importing to tables and col-
umns in your database. When the component loads your XML data, it will
read it as a stream and use the mapping schema to decide where the data
goes in the database.

The mapping schema determines the scope of each row added by the
Bulk Load component. As the closing tag for each row is read, its correspond-
ing data is written to the database.

You access the Bulk Load component itself via the SQLXMLBulkLoad
interface on the SQLXMLBulkLoad COM object. The first step in using it is
to connect to the database using an OLE DB connection string or by setting
its ConnectionCommand property to an existing ADO Command object. The

Henderson_book.fm Page 759 Thursday, September 25, 2003 5:23 AM

760 Chapter 18 SQLXML

second step is to call its Execute method. The VBScript code in Listing 18.70
illustrates.

Listing 18.70

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

You can also specify an XML stream (rather than a file) to load, making
cross-DBMS data transfers (from platforms that feature XML support)
fairly easy.

XML Fragments

Setting the XMLFragment property to True allows the Bulk Load compo-
nent to load data from an XML fragment (an XML document with no root
element, similar to the type returned by Transact-SQL’s FOR XML exten-
sion). Listing 18.71 shows an example.

Listing 18.71

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.XMLFragment = True
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

Henderson_book.fm Page 760 Thursday, September 25, 2003 5:23 AM

XML Bulk Load 761

Enforcing Constraints

By default, the XML Bulk Load component does not enforce check and ref-
erential integrity constraints. Enforcing constraints as data is loaded slows
down the process significantly, so the component doesn’t enforce them un-
less you tell it to. For example, you might want to do that when you’re load-
ing data directly into production tables and you want to ensure that the
integrity of your data is not compromised. To cause the component to en-
force your constraints as it loads data, set the CheckConstraints property to
True, as shown in Listing 18.72.

Listing 18.72

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.CheckConstraints = True
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

Duplicate Keys

Normally you’d want to stop a bulk load process when you encounter a du-
plicate key. Usually this means you’ve got unexpected data values or data
corruption of some type and you need to look at the source data before pro-
ceeding. There are, however, exceptions. Say, for example, that you get a
daily data feed from an external source that contains the entirety of a table.
Each day, a few new rows show up, but, for the most part, the data in the
XML document already exists in your table. Your interest is in loading the
new rows, but the external source that provides you the data may not know
which rows you have and which ones you don’t. They may provide data to
lots of companies—what your particular database contains may be unknown
to them.

In this situation, you can set the IgnoreDuplicateKeys property before
the load, and the component will ignore the duplicate key values it encoun-
ters. The bulk load won’t halt when it encounters a duplicate key—it will

Henderson_book.fm Page 761 Thursday, September 25, 2003 5:23 AM

762 Chapter 18 SQLXML

simply ignore the row containing the duplicate key, and the rows with nond-
uplicate keys will be loaded as you’d expect. Listing 18.73 shows an example.

Listing 18.73

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.IgnoreDuplicateKeys = True
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

When IgnoreDuplicateKeys is set to True, inserts that would cause a
duplicate key will still fail, but the bulk load process will not halt. The re-
mainder of the rows will be processed as though no error occurred.

IDENTITY Columns

SQLXMLBulkLoad’s KeepIdentity property is True by default. This means
that values for identity columns in your XML data will be loaded into the
database rather than being generated on-the-fly by SQL Server. Normally,
this is what you’d want, but you can set KeepIdentity to False if you’d rather
have SQL Server generate these values.

There are a couple of caveats regarding the KeepIdentity property. First,
when KeepIdentity is set to True, SQL Server uses SET IDENTITY_ IN-
SERT to enable identity value insertion into the target table. SET IDENTITY_
INSERT has specific permissions requirements—execute permission de-
faults to the sysadmin role, the db_owner and db_ddladmin fixed database
roles, and the table owner. This means that a user who does not own the tar-
get table and who also is not a sysadmin, db_owner, or DDL administrator
will likely have trouble loading data with the XML Bulk Load component.
Merely having bulkadmin rights is not enough.

Another caveat is that you would normally want to preserve identity val-
ues when bulk loading data into a table with dependent tables. Allowing
these values to be regenerated by the server could be disastrous—you could
break parent-child relationships between tables with no hope of recon-
structing them. If a parent table’s primary key is its identity column and

Henderson_book.fm Page 762 Thursday, September 25, 2003 5:23 AM

XML Bulk Load 763

KeepIdentity is set to False when you load it, you may not be able to resyn-
chronize it with the data you load for its child table. Fortunately, KeepIden-
tity is enabled by default, so normally this isn’t a concern, but be sure you
know what you’re doing if you choose to set it to False.

Listing 18.74 illustrates setting the KeepIdentity property.

Listing 18.74

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.KeepIdentity = False
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

Another thing to keep in mind is that KeepIdentity is a very binary op-
tion—either it’s on or it’s not. The value you give it affects every object into
which XML Bulk Load inserts rows within a given bulk load. You can’t re-
tain identity values for some tables and allow SQL Server to generate them
for others.

NULL Values

For a column not mapped in the schema, the column’s default value is in-
serted. If the column doesn’t have a default, NULL is inserted. If the col-
umn doesn’t allow NULLs, the bulk load halts with an error message.

The KeepNulls property allows you to tell the bulk load facility to insert
a NULL value rather than a column’s default when the column is not
mapped in the schema. Listing 18.75 demonstrates.

Listing 18.75

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.KeepNulls = True

Henderson_book.fm Page 763 Thursday, September 25, 2003 5:23 AM

764 Chapter 18 SQLXML

objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

Table Locks

As with SQL Server’s other bulk load facilities, you can configure SQLXM-
LBulkLoad to lock the target table before it begins loading data into it. This
is more efficient and faster than using more granular locks but has the dis-
advantage of preventing other users from accessing the table while the bulk
load runs. To force a table lock during an XML bulk load, set the ForceTa-
bleLock property to True, as shown in Listing 18.76.

Listing 18.76

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.ForceTableLock = True
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

Transactions

By default, XML bulk load operations are not transactional—that is, if an
error occurs during the load process, the rows loaded up to that point will
remain in the database. This is the fastest way to do things, but it has the
disadvantage of possibly leaving a table in a partially loaded state. To force a
bulk load operation to be handled as a single transaction, set SQLXML-
BulkLoad’s Transaction property to True before calling Execute.

When Transaction is True, all inserts are cached in a temporary file be-
fore being loaded onto SQL Server. You can control where this file is writ-
ten by setting the TempFilePath property. TempFilePath has no meaning
unless Transaction is True. If TempFilePath is not otherwise set, it defaults
to the folder specified by the TEMP environmental variable on the server.

I should point out that bulk loading data within a transaction is much
slower than loading it outside of one. That’s why the component doesn’t

Henderson_book.fm Page 764 Thursday, September 25, 2003 5:23 AM

XML Bulk Load 765

load data within a transaction by default. Also note that you can’t bulk load
binary XML data from within a transaction.

Listing 18.77 illustrates a transactional bulk load.

Listing 18.77

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.Transaction = True
objBulkLoad.TempFilePath = "c:\temp\xmlswap"
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

In this example, SQLXMLBulkLoad establishes its own connection to
the server over OLE DB, so it operates within its own transaction context.
If an error occurs during the bulk load, the component rolls back its own
transaction.

When SQLXMLBulkLoad uses an existing OLE DB connection via its
ConnectionCommand property, the transaction context belongs to that con-
nection and is controlled by the client application. When the bulk load com-
pletes, the client application must explicitly commit or roll back the
transaction. Listing 18.78 shows an example.

Listing 18.78

On Error Resume Next
Err.Clear
Set objCmd = CreateObject("ADODB.Command")
objCmd.ActiveConnection= _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.Transaction = True
objBulkLoad.ConnectionCommand = objCmd
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"

Henderson_book.fm Page 765 Thursday, September 25, 2003 5:23 AM

766 Chapter 18 SQLXML

If Err.Number = 0 Then
 objCmd.ActiveConnection.CommitTrans
Else
 objCmd.ActiveConnection.RollbackTrans
End If
Set objBulkLoad = Nothing
Set objCmd = Nothing

Note that when using the ConnectionCommand property, Transaction
is required—it must be set to True.

Errors

The XML Bulk Copy component supports logging error messages to a file
via its ErrorLogFile property. This file is an XML document itself that lists
any errors that occurred during the bulk load. Listing 18.79 demonstrates
how to use this property.

Listing 18.79

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.ErrorLogFile = "c:\temp\xmlswap\errors.xml"
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

The file you specify will contain a Record element for each error that
occurred during the last bulk load. The most recent error message will be
listed first.

Generating Database Schemas

In addition to loading data into existing tables, the XML Bulk Copy compo-
nent can also create target tables for you if they do not already exist, or drop
and recreate them if they do exist. To create nonexistent tables, set the com-
ponent’s SchemaGen property to True, as shown in Listing 18.80.

Henderson_book.fm Page 766 Thursday, September 25, 2003 5:23 AM

XML Bulk Load 767

Listing 18.80

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.SchemaGen = True
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

Since SchemaGen is set to True, any tables in the schema that don’t al-
ready exist will be created when the bulk load starts. For tables that already
exist, data is simply loaded into them as it would normally be.

If you set the BulkLoad property of the component to False, no data is
loaded. So, if SchemaGen is set to True but BulkLoad is False, you’ll get
empty tables for those in the mapping schema that did not already exist in
the database, but you’ll get no data. Listing 18.81 presents an example.

Listing 18.81

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.SchemaGen = True
objBulkLoad.BulkLoad = False
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

When XML Bulk Load creates tables, it uses the information in the
mapping schema to define the columns in each table. The sql:datatype an-
notation defines column data types, and the dt:type attribute further de-
fines column type information. To define a primary key within the mapping
schema, set a column’s dt:type attribute to id and set the SGUseID prop-
erty of the XML Bulk Load component to True. The mapping schema in
Listing 18.82 illustrates.

Henderson_book.fm Page 767 Thursday, September 25, 2003 5:23 AM

768 Chapter 18 SQLXML

Listing 18.82

<ElementType name="Orders" sql:relation="Orders">
 <AttributeType name="OrderID" sql:datatype="int" dt:type="id"/>
 <AttributeType name="ShipCity" sql:datatype="nvarchar(30)"/>

 <attribute type="OrderID" sql:field="OrderID"/>
 <attribute type="ShipCity" sql:field="ShipCity"/>
</ElementType>

Listing 18.83 shows some VBScript code that sets the SGUseID prop-
erty so that a primary key will automatically be defined for the table that’s
created on the server.

Listing 18.83

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.SchemaGen = True
objBulkLoad.SGUseID = True
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

Here’s the Transact-SQL that results when the bulk load executes:

CREATE TABLE Orders
(
 OrderID int NOT NULL,
 ShipCity nvarchar(30) NULL,
 PRIMARY KEY CLUSTERED (OrderID)
)

In addition to being able to create new tables from those in the map-
ping schema, SQLXMLBulkLoad can also drop and recreate tables. Set the
SGDropTables property to True to cause the component to drop and recre-
ate the tables mapped in the schema, as shown in Listing 18.84.

Henderson_book.fm Page 768 Thursday, September 25, 2003 5:23 AM

Managed Classes 769

Listing 18.84

Set objBulkLoad = CreateObject("SQLXMLBulkLoad.SQLXMLBulkLoad")
objBulkLoad.ConnectionString = _
 "provider=SQLOLEDB;data source=KUFNATHE;database=Northwind;" & _
 "Integrated Security=SSPI;"
objBulkLoad.SchemaGen = True
objBulkLoad.SGDropTables = True
objBulkLoad.Execute "d:\xml\OrdersSchema.xml",
 "d:\xml\OrdersData.xml"
Set objBulkLoad = Nothing

Managed Classes

SQLXML provides managed code classes that allow you to retrieve XML
data from SQL Server (you can translate the data to XML on the server or
at the client). These classes have analogues in the .NET Framework itself
but are more geared toward SQLXML and exposing its unique functionality
in managed code applications. The SQLXML classes reside in an assembly
named Microsoft.Data.SqlXml, and, as with any managed code assembly,
they can be accessed from apps written in any CLR-compliant language, in-
cluding C#, VB.NET, Delphi.NET, and others.

The SqlXmlCommand, SqlXmlParameter, and SqlXmlAdapter classes
are the key managed code classes in the SqlXml assembly. As I’ve men-
tioned, these are similar to their similarly named counterparts in the .NET
Framework. SqlXmlCommand is used to execute T-SQL commands or SQL
Server procedural objects and optionally return their results as XML.
SqlXmlParameter is used to set up parameterized queries. SqlXmlAdapter is
used to process the results from a SqlXmlCommand execution. If the under-
lying data source supports modification, changes can be made at the client
and posted back to the server using diffgrams, specialized updategram-like
templates used by the .NET Framework to encapsulate data modifications.

The best way to understand how these classes interoperate in a real ap-
plication is to build one. The C# example code in the next example demon-
strates how to use each of the main SQLXML managed classes to execute a
stored procedure and process its result set. Let’s begin with the source code
for the stored procedure (Listing 18.85).

Henderson_book.fm Page 769 Thursday, September 25, 2003 5:23 AM

770 Chapter 18 SQLXML

Listing 18.85

USE Northwind
GO
DROP PROC ListCustomers
GO
CREATE PROC ListCustomers @CustomerID nvarchar(10)='%'
AS
PRINT '@CustomerID = ' +@CustomerID

SELECT *
FROM Customers
WHERE CustomerID LIKE @CustomerID

RAISERROR('%d Customers', 1,1, @@ROWCOUNT)
GO
EXEC ListCustomers N'ALFKI'

This stored proc takes a single parameter, a customer ID mask, and lists
all the rows from the Northwind Customers table that match it. Listing
18.86 shows the C# code that uses SQLXML managed classes to execute
the stored proc. (You can find this code in the CH18\managed_classes sub-
folder on the CD accompanying this book.)

Listing 18.86

using System;
using Microsoft.Data.SqlXml;
using System.IO;
using System.Xml;
class CmdExample
{
 static string strConn = "Provider=SQLOLEDB;Data Source='(local)';
 database=Northwind; Integrated Security=SSPI";
 public static int CmdExampleWriteXML()
 {
 XmlReader Reader;
 SqlXmlParameter Param;
 XmlTextWriter TxtWriter;

 //Create a new SqlXmlCommand instance
 SqlXmlCommand Cmd = new SqlXmlCommand(strConn);

Henderson_book.fm Page 770 Thursday, September 25, 2003 5:23 AM

Managed Classes 771

 //Set it up to call our stored proc
 Cmd.CommandText = "EXEC ListCustomersXML ?";

 //Create a parameter and give it a value
 Param = Cmd.CreateParameter();
 Param.Value = "ALFKI";

 //Execute the proc
 Reader = Cmd.ExecuteXmlReader();

 //Create a new XmlTextWriter instance
 //to write to the console
 TxtWriter = new XmlTextWriter(Console.Out);

 //Move to the root element
 Reader.MoveToContent();

 //Write the document to the console
 TxtWriter.WriteNode(Reader, false);

 //Flush the writer and close the reader
 TxtWriter.Flush();
 Reader.Close();

 return 0;
 }
 public static int Main(String[] args)
 {
 CmdExampleWriteXML();
 return 0;
 }
}

Note the reference to the Microsoft.Data.SqlXml assembly. You will
have to add a reference to this assembly in the Visual Studio .NET IDE (or
on the csc.exe command line) in order to compile and link this code.

Let’s walk through how this code works. We begin by instantiating a
new SqlXmlCommand and passing it our connection string. We then set its
CommandText property to call a stored procedure with a replaceable pa-
rameter. Next, we create a SqlXmlParameter instance and assign its Value
property in order to supply a value for the stored procedure’s parameter.

Henderson_book.fm Page 771 Thursday, September 25, 2003 5:23 AM

772 Chapter 18 SQLXML

Once the SqlXmlCommand object is properly set up, we call its Exe-
cuteXmlReader method. This returns an XmlReader instance that we can
use to process the stored proc’s results. We then create an XmlTextWriter
object so that we can write out the XML returned by the SqlXmlCommand
object. We follow up by moving to the start of the document itself (via the
MoveToContent call), then write the entire document to the console via the
TxtWriter.WriteNode call. We then conclude by flushing the XmlTextWriter
object and closing the XmlReader object that was originally returned by the
call to SqlXmlCommand.ExecuteXmlReader.

If you’ve done much programming with the .NET Framework’s
ADO.NET and XML classes, this code probably looks very familiar to you.
All three SQLXML managed classes have counterparts in the .NET Frame-
work itself. The metaphors are the same. They return compatible types with
the base .NET Framework classes where it makes sense and can be used in-
terchangeably with them. Their purpose is to extend the ADO.NET classes
to include functionality that’s specific to SQLXML, not replace them or of-
fer an alternative to them.

SQLXML Web Service (SOAP) Support

SQLXML’s Web service support allows you to expose SQL Server as a Web
service. This allows stored procedures, other procedural objects, and query
templates to be executed as though they were methods exposed by a tradi-
tional SOAP-based Web service. SQLXML provides the plumbing neces-
sary to access SQL Server data using SOAP from any platform or client that
can make SOAP requests.

The advantage of this, of course, is that you don’t need SQL Server cli-
ent software to run queries and access SQL Server objects. This means that
applications on client platforms not directly supported by SQL Server (e.g.,
Linux) can submit queries and retrieve results from SQL Server via
SQLXML and its SOAP facility.

You set up SQL Server to masquerade as a Web service by configuring a
SOAP virtual name in the IIS Virtual Directory Management tool. (You can
find this under the SQLXML | Configure IIS menu option under Start |
Programs.) A SOAP virtual name is simply a folder associated with an IIS
virtual directory name whose type has been set to soap. You can specify
whatever service name you like in the Web Service Name text box; the con-
ventional name is soap. Once this virtual name is set up, you configure spe-

Henderson_book.fm Page 772 Thursday, September 25, 2003 5:23 AM

SQLXML Web Service (SOAP) Support 773

cific SQL Server objects to be exposed by the Web service by clicking the
Configure button on the Virtual Names tab and selecting the object name,
the format of the XML to produce on the middle tier (via SQLISAPI), and
the manner in which to expose the object: as a collection of XML elements,
as a single Dataset object, or as a collection of Datasets. As the exercise
we’ll go through in just a moment illustrates, you can expose a given server
object multiple times and in multiple ways, providing client applications
with a wealth of ways to communicate with SQL Server over SOAP.

Architecturally, SQLXML’s SOAP capabilities are provided by its ISAPI
extension, SQLISAPI. These capabilities are an extension of the virtual di-
rectory concept that you configure in order to access the server via URL
queries and templates. The SOAP virtual name that you set up provides ac-
cess to SQLXML’s Web service facility via a URL. It allows any client appli-
cation that can communicate over SOAP with this URL to access SQL
Server objects just as it would any other Web service. Java applications, tra-
ditional ADO applications, and, of course, .NET applications can access
SQL Server procedural objects and XML templates without using tradi-
tional SQL Server client software or communicating over TDS.

In this next exercise, we’ll walk through exposing SQL Server as a Web
service and then consuming that service in a C# application. We’ll set up the
SOAP virtual name, then we’ll configure a SQL Server procedure object to
be exposed as a collection of Web service methods. Finally, we’ll build a
small application to consume the service and demonstrate how to interact
with it.

Exercise 18.4 Building and Consuming a SQLXML Web Service

1. Under the \inetpub\wwwroot\Northwind folder that you created earlier,
create a folder named Soap.

2. Start the IIS Virtual Directory Management for SQLXML tool that you
used to configure the Northwind virtual folder earlier.

3. Go to the Virtual Names tab and add a new virtual name with a Name,
Type, and Web Service Name of soap. Set the path to the folder you
created in step 1.

4. Save the virtual name configuration. At this point, the Configure button
should be enabled. Click it to begin exposing specific procedural ob-
jects and templates via the Web service.

5. Click the ellipsis button to the right of the SP/Template text box and se-
lect the ListCustomers stored procedure from the list.

6. Name the method ListCustomers and set its row format to Raw and its
output format to XML objects, then click OK.

Henderson_book.fm Page 773 Thursday, September 25, 2003 5:23 AM

774 Chapter 18 SQLXML

7. Repeat the process and name the new method ListCustomersAs-
Dataset (you will be referencing the ListCustomers stored procedure).
Set its output type to Single dataset, then click OK.

8. Repeat the process again and name the new method ListCustomersAs-
Datasets. Set its output type to Dataset objects, then click OK. You’ve
just exposed the ListCustomers stored procedure as three different
Web service methods using three different output formats. Note that
procedural objects you set up this way must not return XML themselves
(i.e., they must not use the Transact-SQL FOR XML option) because
XML formatting is handled exclusively at the middle tier by SQLISAPI
when using the SQLXML Web service facility.

9. Start a new C# Windows application project in Visual Studio .NET. The
app we’ll build will allow you to invoke the SQLXML Web service facility
to execute the ListCustomers stored proc using a specified CustomerID
mask.

10. Add a single TextBox control to the upper-left corner of the default form
to serve as the entry box for the CustomerID mask.

11. Add a Button control to the right of the TextBox control to be used to ex-
ecute the Web service method.

12. Add three RadioButton controls to the right of the button to specify
which Web method we want to execute. Name the first rbXMLElements,
the second rbDataset, and the third rbDatasetObjects. Set the Text
property of each control to a brief description of its corresponding Web
method (e.g., the Text property for rbXMLElements should be some-
thing like “XML Elements”).

13. Add a ListBox control below the other controls on the form. This will be
used to display the output from the Web service methods we call. Dock
the ListBox control to the bottom of the form and be sure it is sized to
occupy most of the form.

14. Make sure your instance of IIS is running and accessible. As with
the other Web-oriented examples in this chapter, I’m assuming that
you have your own instance of IIS and that it’s running on the local
machine.

15. Right-click your solution in the Solution Explorer and select Add Web
Reference. In the URL for the Web reference, type the following:

http://localhost/Northwind/soap?wsdl

This URL refers by name to the virtual directory you created earlier,
then to the soap virtual name you created under it, and finally to the
Web Services Description Language (WSDL) functionality provided by
SQLISAPI. As I mentioned earlier, a question mark in a URL denotes the
start of the URL’s parameters, so wsdl is being passed as a parameter
into the SQLISAPI extension DLL. Like XML and SOAP, WSDL is its own
W3C standard and describes, in XML, Web services as a set of end

Henderson_book.fm Page 774 Thursday, September 25, 2003 5:23 AM

SQLXML Web Service (SOAP) Support 775

points operating on messages containing either procedural or docu-
ment-oriented information. You can learn more about WSDL by visiting
this link on the W3C Web site: http://www.w3.org/TR/wsdl.

16. Once you’ve added the Web reference, the localhost Web service will
be available for use within your application. A proxy class is created un-
der your application folder that knows how to communicate with the
Web service you referenced. To your code, this proxy class looks identi-
cal to the actual Web service. When you make calls to this class, they
are transparently marshaled to the Web service itself, which might re-
side on some other machine located elsewhere on the local intranet or
on the public Internet. You’ll recall from Chapter 6 that I described Win-
dows’ RPC facility as working the very same way. Web services are re-
ally just an extension of this concept. You work and interoperate with
local classes and methods; the plumbing behind the scenes handles
getting data to and from the actual implementation of the service with-
out your app even being aware of the fact that it is dealing with any sort
of remote resource.

17. Double-click the Button control you added earlier and add to it the code
in Listing 18.87.

Listing 18.87

int iReturn = 0;
object result;
object[] results;
System.Xml.XmlElement resultElement;
System.Data.DataSet resultDS;
localhost.soap proxy = new localhost.soap();
proxy.Credentials=System.Net.CredentialCache.DefaultCredentials;

// Return ListCustomers as XMLElements
if (rbXMLElements.Checked)
{
 listBox1.Items.Add("Executing ListCustomers...");
 listBox1.Items.Add("");

 results = proxy.ListCustomers(textBox1.Text);

 for (int j=0; j<results.Length; j++)
 {
 localhost.SqlMessage errorMessage;
 result= results[j];

Henderson_book.fm Page 775 Thursday, September 25, 2003 5:23 AM

776 Chapter 18 SQLXML

 if (result.GetType().IsPrimitive)
 {
 listBox1.Items.Add(
 string.Format("ListCustomers return value: {0}", result));
 }
 if (result is System.Xml.XmlElement)
 {
 resultElement = (System.Xml.XmlElement) results[j];
 listBox1.Items.Add(resultElement.OuterXml);
 }
 else if (result is localhost.SqlMessage) {
 errorMessage = (localhost.SqlMessage) results[j];
 listBox1.Items.Add(errorMessage.Message);
 listBox1.Items.Add(errorMessage.Source);
 }
 }
 listBox1.Items.Add("");
}
// Return ListCustomers as Dataset objects
else if (rbDatasetObjects.Checked)
{
 listBox1.Items.Add("Executing ListCustomersAsDatasets...");
 listBox1.Items.Add("");
 results = proxy.ListCustomersAsDatasets(textBox1.Text);

 for (int j=0; j<results.Length; j++)
 {
 localhost.SqlMessage errorMessage;
 result= results[j];

 if (result.GetType().IsPrimitive)
 {
 listBox1.Items.Add(
 string.Format("ListCustomers return value: {0}", result));
 }
 if (result is System.Data.DataSet)
 {
 resultDS = (System.Data.DataSet) results[j];
 listBox1.Items.Add("DataSet " +resultDS.GetXml());
 }
 else if (result is localhost.SqlMessage)
 {
 errorMessage = (localhost.SqlMessage) results[j];
 listBox1.Items.Add("Message " +errorMessage.Message);

Henderson_book.fm Page 776 Thursday, September 25, 2003 5:23 AM

SQLXML Web Service (SOAP) Support 777

 listBox1.Items.Add(errorMessage.Source);
 }
 }
 listBox1.Items.Add("");
}
// Return ListCustomers as Dataset
else if (rbDataset.Checked)
{
 listBox1.Items.Add("Executing ListCustomersAsDataset...");
 listBox1.Items.Add("");
 resultDS = proxy.ListCustomersAsDataset(textBox1.Text,
 out iReturn);
 listBox1.Items.Add(resultDS.GetXml());
 listBox1.Items.Add(
 string.Format("ListCustomers return value: {0}", iReturn));
 listBox1.Items.Add("");
}

18. This code can be divided into three major routines—one each for the
three Web service methods we call. Study the code for each type of out-
put format and compare and contrast their similarities and differences.
Note the use of reflection in the code to determine what type of object
we receive back from Web service calls in situations where multiple
types are possible.

19. Compile and run the app. Try all three output formats and try different
CustomerID masks. Each time you click your Button control, the follow-
ing things happen.
a. Your code makes a method call to a proxy class Visual Studio .NET

added to your project when you added the Web reference to the
SQLXML SOAP Web service you set up for Northwind.

b. The .NET Web service code translates your method call into a SOAP
call and passes it across the network to the specified host. In this
case, your Web service host probably resides on the same ma-
chine, but the architecture allows it to reside anywhere on the local
intranet or public Internet.

c. The SQLXML ISAPI extension receives your SOAP call and translates
it into a call to the ListCustomers stored procedure in the database
referenced by your IIS virtual directory, Northwind.

d. SQL Server runs the procedure and returns its results as a rowset
to SQLISAPI.

e. SQLISAPI translates the rowset to the appropriate XML format and
object based on the way the Web service method you called was
configured, then returns it via SOAP to the .NET Framework Web ser-
vice code running on your client machine.

Henderson_book.fm Page 777 Thursday, September 25, 2003 5:23 AM

778 Chapter 18 SQLXML

f. The .NET Framework Web services code translates the SOAP it re-
ceives into the appropriate objects and result codes and returns
them to your application.

g. Your app then uses additional method calls to extract the returned
information as text and writes that text to the ListBox control.

So, there you have it, a basic runthrough of how to use SQLXML’s SOAP
facilities to access SQL Server via SOAP. As I’ve said, an obvious application
of this technology is to permit SQL Server to play in the Web service space—
to interoperate with other Web services without requiring the installation of
proprietary client software or the use of supported operating systems. Thanks
to SQLXML’s Web service facility, anyone who can speak SOAP can access
SQL Server. SQLXML’s Web service support is a welcome and very powerful
addition to the SQL Server technology family.

SQLXML Limitations

SQL Server’s XML support has some fundamental limitations that make it
difficult to use in certain situations. In this section, we’ll explore a couple of
these and look at ways to work around them.

sp_xml_concat

Given that sp_xml_preparedocument accepts document text of virtually any
length (up to 2GB), you’d think that SQL Server’s XML facilities would be
able to handle long documents just fine—but that’s not the case. Although
sp_xml_preparedocument’s xmltext parameter accepts text as well as varchar
parameters, Transact-SQL doesn’t support local text variables. About the
closest you can get to a local text variable in Transact-SQL is to set up a pro-
cedure with a text parameter. However, this parameter cannot be assigned to
nor can it be the recipient of the text data returned by the READTEXT
command. About the only thing you can do with it is insert it into a table.

The problem is painfully obvious when you try to store a large XML
document in a table and process it with sp_xml_preparedocument. Once
the document is loaded into the table, how do you extract it in order to pass
it into sp_xml_preparedocument? Unfortunately, there’s no easy way to do
so. Since we can’t declare local text variables, about the only thing we can
do is break the document into multiple 8,000-byte varchar variables and use
parameter concatenation when we call sp_xml_preparedocument. This is a
ridiculously difficult task, so I’ve written a stored procedure to do it for you.

Henderson_book.fm Page 778 Thursday, September 25, 2003 5:23 AM

SQLXML Limitations 779

It’s called sp_xml_concat, and you can use it to process large XML docu-
ments stored in a table in a text, varchar, or char column.

The sp_xml_concat procedure takes three parameters: the names of the
table and column in which the document resides and an output parameter
that returns the document handle as generated by sp_xml_preparedocument.
You can take the handle that’s returned by sp_xml_concat and use it with
OPENXML and sp_xml_unpreparedocument.

The table parameter can be either an actual table or view name or a
Transact-SQL query wrapped in parentheses that will function as a derived
table. The ability to specify a derived table allows you to filter the table that
the procedure sees. So, if you want to process a specific row in the table or
otherwise restrict the procedure’s view of the table, you can do so using a
derived table expression.

Listing 18.88 shows the full source code for sp_xml_concat.

Listing 18.88

USE master
GO
IF OBJECT_ID('sp_xml_concat','P') IS NOT NULL
 DROP PROC sp_xml_concat
GO
CREATE PROC sp_xml_concat
 @hdl int OUT,
 @table sysname,
 @column sysname
AS
EXEC('
SET TEXTSIZE 4000
DECLARE
 @cnt int,
 @c nvarchar(4000)
DECLARE
 @declare varchar(8000),
 @assign varchar(8000),
 @concat varchar(8000)

SELECT @c = CONVERT(nvarchar(4000),'+@column+') FROM '+@table+'

SELECT @declare = ''DECLARE'',
 @concat = '''''''''''''''',
 @assign = '''',
 @cnt = 0

Henderson_book.fm Page 779 Thursday, September 25, 2003 5:23 AM

780 Chapter 18 SQLXML

WHILE (LEN(@c) > 0) BEGIN
 SELECT @declare = @declare + '' @c''+CAST(@cnt as nvarchar(15))
 +''nvarchar(4000),'',
 @assign = @assign + ''SELECT @c''+CONVERT(nvarchar(15),@cnt)
 +''= SUBSTRING(' + @column+',''+ CONVERT(nvarchar(15),
 1+@cnt*4000)+ '', 4000) FROM '+@table+' '',
 @concat = @concat + ''+@c''+CONVERT(nvarchar(15),@cnt)
 SET @cnt = @cnt+1
 SELECT @c = CONVERT(nvarchar(4000),SUBSTRING('+@column+',
 1+@cnt*4000,4000)) FROM '+@table+'
END

IF (@cnt = 0) SET @declare = ''''
ELSE SET @declare = SUBSTRING(@declare,1,LEN(@declare)-1)

SET @concat = @concat + ''+''''''''''''''

EXEC(@declare+'' ''+@assign+'' ''+
''EXEC(
''''DECLARE @hdl_doc int
 EXEC sp_xml_preparedocument @hdl_doc OUT, ''+@concat+''
 DECLARE hdlcursor CURSOR GLOBAL FOR SELECT @hdl_doc AS
 DocHandle'''')''
)
')
OPEN hdlcursor
FETCH hdlcursor INTO @hdl
DEALLOCATE hdlcursor
GO

This procedure dynamically generates the necessary DECLARE and
SELECT statements to break up a large text column into nvarchar(4000)
pieces (e.g., DECLARE @c1 nvarchar(4000) SELECT @c1= …). As it
does this, it also generates a concatenation expression that includes all of
these variables (e.g., @c1+@c2+@c3, …). Since the EXEC() function sup-
ports concatenation of strings up to 2GB in size, we pass this concatenation
expression into it dynamically and allow EXEC() to perform the concatena-
tion on-the-fly. This basically reconstructs the document that we extracted
from the tab le . This concatenated s t r ing i s then passed into
sp_xml_preparedocument for processing. The end result is a document
handle that you can use with OPENXML. Listing 18.89 shows an example.

Henderson_book.fm Page 780 Thursday, September 25, 2003 5:23 AM

SQLXML Limitations 781

(You’ll find the full test query in the CH18 subfolder on the CD accompany-
ing this book.)

Listing 18.89

(Code abridged)

USE Northwind
GO
CREATE TABLE xmldoc
(id int identity,
 doc text)
INSERT xmldoc VALUES('<Customers>
<Customer CustomerID="VINET" ContactName="Paul Henriot">
 <Order CustomerID="VINET" EmployeeID="5" OrderDate=
 "1996-07-04T00:00:00">
 <OrderDetail OrderID="10248" ProductID="11" Quantity="12"/>
 <OrderDetail OrderID="10248" ProductID="42" Quantity="10"/>
// More code lines here...
 </Order>
</Customer>
<Customer CustomerID="LILAS" ContactName="Carlos GOnzlez">
 <Order CustomerID="LILAS" EmployeeID="3" OrderDate=
 "1996-08-16T00:00:00">
 <OrderDetail OrderID="10283" ProductID="72" Quantity="3"/>
 </Order>
</Customer>
</Customers>')

DECLARE @hdl int
EXEC sp_xml_concat @hdl OUT, '(SELECT doc FROM xmldoc WHERE id=1)
 a', 'doc'

SELECT * FROM OPENXML(@hdl, '/Customers/Customer') WITH
 (CustomerID nvarchar(50))

EXEC sp_xml_removedocument @hdl
SELECT DATALENGTH(doc) from xmldoc
GO
DROP TABLE xmldoc

(Results)

Henderson_book.fm Page 781 Thursday, September 25, 2003 5:23 AM

782 Chapter 18 SQLXML

CustomerID
--
VINET
LILAS

36061

Although I’ve abridged the XML document in the test query, the one
on the CD is over 36,000 bytes in size, as you can see from the result of the
DATALENGTH() query at the end of the test code.

We pass a derived table expression into sp_xml_concat along with the
column name we want to extract, and the procedure does the rest. It’s able
to extract the nodes we’re searching for, even though one of them is near
the end of a fairly large document.

sp_run_xml_proc

Another limitation of SQL Server’s XML support exists because XML re-
sults are not returned as traditional rowsets. Returning XML results as
streams has many advantages, but one of the disadvantages is that you can’t
call a stored procedure that returns an XML result using a four-part name
or OPENQUERY() and get a useful result. The result set you’ll get will be
an unrecognizable binary result set because SQL Server’s linked server ar-
chitecture doesn’t support XML streams.

You’ll run into similar limitations if you try to insert the result of a FOR
XML query into a table or attempt to trap it in a variable—SQL Server sim-
ply won’t let you do either of these. Why? Because the XML documents re-
turned by SQL Server are not traditional rowsets.

To work around this, I’ve written a stored procedure named sp_run_
xml_proc. You can use it to call linked server stored procedures (it needs to
reside on the linked server) that return XML documents as well as local
XML procedures whose results you’d like to store in a table or trap in a vari-
able. This procedure does its magic by opening its own connection into the
server (it assumes Windows Authentication is being used) and running your
procedure. Once your procedure completes, sp_run_xml_proc processes
the XML stream it returns using SQL-DMO calls, then translates it into a
traditional rowset and returns that rowset. This result set can be inserted
into a table or processed further just like any other result set. Listing 18.90
presents the source code for sp_run_xml_proc.

Henderson_book.fm Page 782 Thursday, September 25, 2003 5:23 AM

SQLXML Limitations 783

Listing 18.90

USE master
GO
IF OBJECT_ID('sp_run_xml_proc','P') IS NOT NULL
 DROP PROC sp_run_xml_proc
GO
CREATE PROC sp_run_xml_proc
 @procname sysname -- Proc to run
AS

DECLARE @dbname sysname,
 @sqlobject int, -- SQL Server object
 @object int, -- Work variable for accessing COM objects
 @hr int, -- Contains HRESULT returned by COM
 @results int, -- QueryResults object
 @msgs varchar(8000) -- Query messages

IF (@procname='/?') GOTO Help

-- Create a SQLServer object
EXEC @hr=sp_OACreate 'SQLDMO.SQLServer', @sqlobject OUT
IF (@hr <> 0) BEGIN
 EXEC sp_displayoaerrorinfo @sqlobject, @hr
 RETURN
END

-- Set SQLServer object to use a trusted connection
EXEC @hr = sp_OASetProperty @sqlobject, 'LoginSecure', 1
IF (@hr <> 0) BEGIN
 EXEC sp_displayoaerrorinfo @sqlobject, @hr
 RETURN
END

-- Turn off ODBC prefixes on messages
EXEC @hr = sp_OASetProperty @sqlobject, 'ODBCPrefix', 0
IF (@hr <> 0) BEGIN
 EXEC sp_displayoaerrorinfo @sqlobject, @hr
 RETURN
END

-- Open a new connection (assumes a trusted connection)
EXEC @hr = sp_OAMethod @sqlobject, 'Connect', NULL, @@SERVERNAME
IF (@hr <> 0) BEGIN

Henderson_book.fm Page 783 Thursday, September 25, 2003 5:23 AM

784 Chapter 18 SQLXML

 EXEC sp_displayoaerrorinfo @sqlobject, @hr
 RETURN
END

-- Get a pointer to the SQLServer object's Databases collection
EXEC @hr = sp_OAGetProperty @sqlobject, 'Databases', @object OUT
IF @hr <> 0 BEGIN
 EXEC sp_displayoaerrorinfo @sqlobject, @hr
 RETURN
END

-- Get a pointer from the Databases collection for the
-- current database
SET @dbname=DB_NAME()
EXEC @hr = sp_OAMethod @object, 'Item', @object OUT, @dbname
IF @hr <> 0 BEGIN
 EXEC sp_displayoaerrorinfo @object, @hr
 RETURN
END

-- Call the Database object's ExecuteWithResultsAndMessages2
-- method to run the proc
EXEC @hr = sp_OAMethod @object, 'ExecuteWithResultsAndMessages2',
 @results OUT, @procname, @msgs OUT
IF @hr <> 0 BEGIN
 EXEC sp_displayoaerrorinfo @object, @hr
 RETURN
END

-- Display any messages returned by the proc
PRINT @msgs

DECLARE @rows int, @cols int, @x int, @y int, @col varchar(8000),
 @row varchar(8000)

-- Call the QueryResult object's Rows method to get the number of
-- rows in the result set
EXEC @hr = sp_OAMethod @results, 'Rows',@rows OUT
IF @hr <> 0 BEGIN
 EXEC sp_displayoaerrorinfo @object, @hr
 RETURN
END

-- Call the QueryResult object's Columns method to get the number
-- of columns in the result set

Henderson_book.fm Page 784 Thursday, September 25, 2003 5:23 AM

SQLXML Limitations 785

EXEC @hr = sp_OAMethod @results, 'Columns',@cols OUT
IF @hr <> 0 BEGIN
 EXEC sp_displayoaerrorinfo @object, @hr
 RETURN
END

DECLARE @table TABLE (XMLText varchar(8000))

-- Retrieve the result set column-by-column using the
-- GetColumnString method
SET @y=1
WHILE (@y<=@rows) BEGIN
 SET @x=1
 SET @row=''
 WHILE (@x<=@cols) BEGIN
 EXEC @hr = sp_OAMethod @results, 'GetColumnString',
 @col OUT, @y, @x
 IF @hr <> 0 BEGIN
 EXEC sp_displayoaerrorinfo @object, @hr
 RETURN
 END
 SET @row=@row+@col+' '
 SET @x=@x+1
 END
 INSERT @table VALUES (@row)
 SET @y=@y+1
END

SELECT * FROM @table

EXEC sp_OADestroy @sqlobject -- For cleanliness

RETURN 0

Help:
PRINT 'You must specify a procedure name to run'
RETURN -1

GO

Although the prospect of having to open a separate connection into
the server in order to translate the document is not particularly exciting, it
is unfortunately the only way to do this without resorting to client-side

Henderson_book.fm Page 785 Thursday, September 25, 2003 5:23 AM

786 Chapter 18 SQLXML

processing—at least for now. The test code in Listing 18.91 shows how to
use sp_run_xml_proc.

Listing 18.91

USE pubs
GO
DROP PROC testxml
GO
CREATE PROC testxml as
PRINT 'a message here'
SELECT * FROM pubs..authors FOR XML AUTO
GO
EXEC [TUK\PHRIP].pubs.dbo.sp_run_xml_proc 'testxml'

(Results abridged)

a message here
XMLText
--
<pubs..authors au_id="172-32-1176" au_lname="White" au_fname="John
<pubs..authors au_id="672-71-3249" au_lname="Yokomoto" au_fname="A

Although I’ve clipped the resulting document considerably, if you run this
code from Query Analyzer (replace the linked server reference in the exam-
ple with your own), you’ll see that the entire document is returned as a result
set. You can then insert this result set into a table using INSERT…EXEC for
further processing. For example, you could use this technique to assign the
document that’s returned to a variable (up to the first 8,000 bytes) or to
change it in some way using Transact-SQL. And once the document is modi-
fied to your satisfaction, you could call sp_xml_concat (listed earlier in the
chapter) to return a document handle for it so that you can query it with
OPENXML. Listing 18.92 does just that.

Listing 18.92

SET NOCOUNT ON
GO
USE pubs

Henderson_book.fm Page 786 Thursday, September 25, 2003 5:23 AM

SQLXML Limitations 787

GO
DROP PROC testxml
GO
CREATE PROC testxml as
SELECT au_lname, au_fname FROM authors FOR XML AUTO
GO

CREATE TABLE #XMLText1
(XMLText varchar(8000))
GO

-- Insert the XML document into a table
-- using sp_run_xml_proc
INSERT #XMLText1
EXEC sp_run_xml_proc 'testxml'

-- Put the document in a variable
-- and add a root element
DECLARE @doc varchar(8000)
SET @doc=''
SELECT @doc=@doc+XMLText FROM #XMLText1
SET @doc='<root>'+@doc+'</root>'

-- Put the document back in a table
-- so that we can pass it into sp_xml_concat
SELECT @doc AS XMLText INTO #XMLText2

GO
DECLARE @hdl int
EXEC sp_xml_concat @hdl OUT, '#XMLText2', 'XMLText'
SELECT * FROM OPENXML(@hdl, '/root/authors') WITH
 (au_lname nvarchar(40))
EXEC sp_xml_removedocument @hdl
GO
DROP TABLE #XMLText1, #XMLText2

After the document is returned by sp_run_xml_proc and stored in a ta-
ble, we load it into a variable, wrap it in a root element and store it in a sec-
ond table so that we may pass it into sp_xml_concat. Once sp_xml_concat

Henderson_book.fm Page 787 Thursday, September 25, 2003 5:23 AM

788 Chapter 18 SQLXML

returns, we pass the document handle it returns into OPENXML and ex-
tract part of the document:

(Results abridged)

au_lname
--
Bennet
Blotchet-Halls
Carson
DeFrance
...
Ringer
Ringer
Smith
Straight
Stringer
White
Yokomoto

So, using sp_xml_concat and sp_run_xml_proc in conjunction with
SQL Server’s built-in XML tools, we’re able to run the entire XML process-
ing gamut. We start with an XML fragment returned by FOR XML AUTO,
then we store this in a table, retrieve it from the table, wrap it in a root
node, and pass it into OPENXML in order to extract a small portion of the
original document as a rowset. You should find that these two procedures
enhance SQL Server’s own XML abilities significantly.

Recap

SQLXML provides a veritable treasure trove of XML-enabled features for
SQL Server. You can parse and load XML documents, query them using
XPath syntax, query database objects using XPath, and construct templates
and mapping schemas to query data. You can use OPENXML, updategrams,
and XML Bulk Load to load data into SQL Server via XML, and you can use
FOR XML to return SQL Server data as XML. You can access SQL Server
via HTTP and SOAP, and you can return XML data to the client via both
SQLOLEDB and SQLXMLOLEDB. You can translate a rowset to XML on
the server as well as on the client, and you can control the format the gener-
ated XML takes through a variety of mechanisms. And when you run into a

Henderson_book.fm Page 788 Thursday, September 25, 2003 5:23 AM

Knowledge Measure 789

couple of the more significant limitations in the SQLXML technologies, you
can use the sp_xml_concat and sp_run_xml_proc stored procedures pre-
sented in this chapter to work around them.

Knowledge Measure

1. What XML parser does SQL Server’s XML features use?
2. True or false: The NESTED option can be used only in client-side

FOR XML.
3. What extended stored procedure is used to prepare an XML docu-

ment for use by OPENXML?
4. What’s the theoretical maximum amount of memory that SQLXML

will allow MSXML to use from the SQL Server process space?
5. True or false: There is currently no way to disable template caching

for a given SQLISAPI virtual directory.
6. Describe the use of the sql:mapping attribute from Microsoft’s

mapping-schema namespace.
7. Why is the maximum mentioned in question 4 only a theoretical

maximum? What other factors could prevent MSXML from reach-
ing its maximum memory allocation ceiling?

8. What XML support file must you first define before bulk loading an
XML document into a SQL Server database?

9. What does sql:relationship establish for two tables?
10. Is it possible to change the name of the ISAPI extension DLL associ-

ated with a given virtual directory, or must all SQLISAPI-configured
virtual directories use the same ISAPI extension?

11. Explain the way that URL queries are handled by SQLXML.
12. True or false: You can return traditional rowsets from

SQLXMLOLEDB just as you can from any other OLE DB provider.
13. What Win32 API does SQLXML call in order to compute the

amount of physical memory in the machine?
14. Name the two major APIs that MSXML provides for parsing XML

documents.
15. Approximately how much larger in memory is a DOM document

than the underlying XML document?
16. Describe what a “spec proc” is.
17. What internal spec proc is responsible for implementing the

sp_xml_preparedocument extended procedure?

Henderson_book.fm Page 789 Thursday, September 25, 2003 5:23 AM

790 Chapter 18 SQLXML

18. What two properties must be set on the ADO Command object in
order to allow for client-side FOR XML processing?

19. What method of the ADO Recordset object can persist a recordset
as XML?

20. What does the acronym “SAX” stand for in XML parlance?
21. When a standard Transact-SQL query is executed via a URL query,

what type of event does it come into SQL Server as?
22. What’s the name of the OLE DB provider that implements client-

side FOR XML functionality and in what DLL does it reside?
23. Does SQLXML use MSXML to return XML results from server-

side FOR XML queries?
24. True or false: SQLXML no longer supports XDR schemas.
25. What component should you use to load XML data into SQL Server

in the fastest possible manner?
26. True or false: SQLISAPI does not support returning non-XML data

from SQL Server.
27. Is it possible to configure a virtual directory such that FOR XML

queries are processed on the client side by default?
28. Approximately how much larger than the actual document is the in-

memory representation of an XML document stored by SQLXML
for use with OPENXML?

29. True or false: SQLXML does not support inserting new data via
OPENXML because OPENXML returns a read-only rowset.

30. What mapping-schema notational attribute should you use with the
xsd:relationship attribute if you are using a mapping schema with an
updategram and the mapping schema relates two tables in reverse
order?

31. Name the central SQL Server error-reporting routine in which we
set a breakpoint in this chapter.

32. Describe a scenario in which it would make sense to use a mapping
schema with an updategram.

33. What lone value can SQLXMLOLEDB’s Data Source parameter
have?

34. True or false: The SAX parser is built around the notion of persisting
a document in memory in a tree structure so that it is readily accessi-
ble to the rest of the application.

Henderson_book.fm Page 790 Thursday, September 25, 2003 5:23 AM

